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1Introduction
𝜋 Definition 1: Long Term Nonprocessor (LTNP)

Patient who will remain a long time in good health condition, even with a large viral load (cf. HIV).

CLIPBOARD Example 1: Genotype: Qualitative or Quantitative?

SNP ∶

⎧{{
⎨{{⎩

AA
AB
BB

→ ⎛⎜⎜
⎝

0
1
2

⎞⎟⎟
⎠

,

thus we might consider genotype either as a qualitative variable or quantitative variable.

When the variable are quantitative, we use regression, whereas for qualitative variables, we use an
analysis of variance.
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1. Introduction
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Figure 1.1. Illustration of two models fitting observed values
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2Linear Model
2.1. Simple Linear Regression

𝑌𝑖 = 𝛽0 + 𝛽1𝑋𝑖 + 𝜀𝑖

Y = X𝛽 + 𝜀.

⎛⎜⎜⎜⎜⎜
⎝

𝑌1
𝑌2
⋮
𝑌𝑛

⎞⎟⎟⎟⎟⎟
⎠

=
⎛⎜⎜⎜⎜⎜
⎝

1 𝑋1
1 𝑋2
⋮ ⋮
1 𝑋𝑛

⎞⎟⎟⎟⎟⎟
⎠

(𝛽0
𝛽1

)+⎛⎜⎜
⎝

𝜀1
𝜀2
⋮ 𝜀𝑛

⎞⎟⎟
⎠

Assumptions

(𝐴1) 𝜀𝑖 are independent;

(𝐴2) 𝜀𝑖 are identically distributed;

(𝐴3) 𝜀𝑖 are i.i.d ∼ 𝒩(0, 𝜎2) (homoscedasticity).

2.2. Generalized Linear Model
𝑔(𝔼(𝑌 )) = 𝑋𝛽

with 𝑔 being

• Logistic regression: 𝑔(𝑣) = log ( 𝑣
1−𝑣), for instance for boolean values,

• Poisson regression: 𝑔(𝑣) = log(𝑣), for instance for discrete variables.

2.2.1. Penalized Regression
When the number of variables is large, e.g, when the number of explanatory variable is above the number
of observations, if 𝑝 >> 𝑛 (𝑝: the number of explanatory variable, 𝑛 is the number of observations), we
cannot estimate the parameters. In order to estimate the parameters, we can use penalties (additional
terms).

Lasso regression, Elastic Net, etc.

6



2. Linear Model

𝑌 = 𝑋𝛽 + 𝜀,

is noted equivalently as

⎛⎜⎜⎜⎜⎜
⎝

𝑦1
𝑦2
𝑦3
𝑦4

⎞⎟⎟⎟⎟⎟
⎠

=
⎛⎜⎜⎜⎜⎜
⎝

1 𝑥11 𝑥12
1 𝑥21 𝑥22
1 𝑥31 𝑥32
1 𝑥41 𝑥42

⎞⎟⎟⎟⎟⎟
⎠

⎛⎜⎜
⎝

𝛽0
𝛽1
𝛽2

⎞⎟⎟
⎠

+
⎛⎜⎜⎜⎜⎜
⎝

𝜀1
𝜀2
𝜀3
𝜀4

⎞⎟⎟⎟⎟⎟
⎠

.

2.3. Parameter Estimation
2.3.1. Simple Linear Regression
2.3.2. General Case
If X𝑇X is invertible, the OLS estimator is:

̂𝛽 = (X𝑇X)−1X𝑇Y (2.1)

2.3.3. Ordinary Least Square Algorithm
We want to minimize the distance between X𝛽 and Y:

min‖Y − X𝛽‖2

(See chapter 3).

⇒X𝛽 = 𝑝𝑟𝑜𝑗(1,X)Y
⇒∀𝑣 ∈ 𝑤, 𝑣𝑦 = 𝑣𝑝𝑟𝑜𝑗𝑤(𝑦)
⇒∀𝑖 ∶

X𝑖Y = X𝑖X ̂𝛽 where ̂𝛽 is the estimator of 𝛽

⇒X𝑇Y = X𝑇X ̂𝛽

⇒(X𝑇X)−1X𝑇Y = (X𝑇X)−1(X𝑇X) ̂𝛽

⇒ ̂𝛽 = (X𝑇X)−1X𝑇Y

This formula comes from the orthogonal projection of Y on the vector subspace defined by the
explanatory variables X

X ̂𝛽 is the closest point to Y in the subspace generated by X.
If 𝐻 is the projection matrix of the subspace generated by X, XY is the projection on Y on this

subspace, that corresponds to X ̂𝛽.

2.4. Sum of squares
Y − X ̂𝛽 ⟂ X ̂𝛽 − Y 1 if 1 ∈ 𝑉, so

‖Y − Ȳ 1‖⏟⏟⏟⏟⏟
Total SS

= ‖Y − X ̂𝛽‖2⏟⏟⏟⏟⏟
Residual SS

+‖X ̂𝛽 − ̄Y 1‖2⏟⏟⏟⏟⏟
Explicated SS
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2. Linear Model
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Figure 2.1. Orthogonal projection of Y on plan generated by the base described by X. 𝑎 corresponds
to ‖X ̂𝛽 − Ȳ‖2 and 𝑏 corresponds to ̂𝜀 = ‖Y − ̂𝛽X‖2
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Figure 2.2. Ordinary least squares and regression line with simulated data.

2.5. Coefficient of Determination: 𝑅2

𝜋 Definition 2: 𝑅2

0 ≤ 𝑅2 = ‖X ̂𝛽 − Ȳ 1‖2

‖Y − Ȳ 1‖2 = 1 − ‖Y − X ̂𝛽‖2

‖Y − Ȳ 1‖2 ≤ 1

proportion of variation of Y explained by the model.

𝜋 Definition 3: Model dimension

Let ℳ be a model. The dimension of ℳ is the dimension of the subspace generated by X, that is the
number of parameters in the 𝛽 vector.
Nb. The dimension of the model is not the number of parameter, as 𝜎2 is one of the model parameters.
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2. Linear Model

2.6. Gaussian vectors
𝜋 Definition 4: Normal distribution

𝑋 ∼ 𝒩(𝜇, 𝜎2), with density function 𝑓

𝑓(𝑥) = 1
𝜎
√
2𝜋

𝑒− 1
2 ( 𝑥−𝜇

𝜎 )2

𝜋 Definition 5: Gaussian vector

A random vector Y ∈ ℝ𝑛 is a gaussian vector if every linear combination of its component is a gaussian
random variable.

Property 1. 𝑚 = 𝔼(𝑌 ) = (𝑚1,… ,𝑚𝑛)𝑇, where 𝑚𝑖 = 𝔼(𝑌𝑖)

Y ∼ 𝒩𝑛(𝑚,Σ)

where Σ is the variance-covariance matrix!

Σ = E [(Y −𝑚)(Y −𝑚)𝑇] .

INFO Remark 1

Cov(𝑌𝑖, 𝑌𝑖) = Var(𝑌𝑖)

𝜋 Definition 6: Covariance

Cov(𝑌𝑖, 𝑌𝑗) = 𝔼 ((𝑌𝑖 − 𝔼(𝑌𝑗))(𝑌𝑗 − 𝔼(𝑌𝑗)))

When two variable are linked, the covariance is large.
If two variables 𝑋,𝑌 are independent, Cov(𝑋, 𝑌 ) = 0.

𝜋 Definition 7: Correlation coefficient

Cor(𝑌𝑖, 𝑌𝑗) =
𝔼 ((𝑌𝑖 − 𝔼(𝑌𝑗))(𝑌𝑗 − 𝔼(𝑌𝑗)))

√𝔼(𝑌𝑖 − 𝔼(𝑌𝑖)) ⋅ 𝔼(𝑌𝑗 − 𝔼(𝑌𝑗))

Covariance is really sensitive to scale of variables. For instance, if we measure distance in millimeters,
the covariance would be larger than in the case of a measure expressed in metters. Thus the correlation
coefficient, which is a sort of normalized covariance is useful, to be able to compare the values.

9



2. Linear Model

INFO Remark 2

Cov(𝑌𝑖, 𝑌𝑖) = 𝔼((𝑌𝑖 − 𝔼(𝑌𝑖))(𝑌𝑖 − 𝔼(𝑌𝑖)))
= 𝔼((𝑌𝑖 − 𝔼(𝑌𝑖))2)
= Var(𝑌𝑖)

Σ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝕍(𝑌1)

Cov(𝑌𝑖, 𝑌𝑗) 𝕍(𝑌𝑖)

𝕍(𝑌𝑛)

⎞⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(2.2)

𝜋 Definition 8: Identity matrix

ℐ𝑛 = ⎛⎜⎜
⎝

1 0 0
0 0
0 0 1

⎞⎟⎟
⎠

𝜋 Theorem 1: Cochran Theorem (Consequence)

Let Z be a gaussian vector: Z ∼ 𝒩𝑛(0𝑛, 𝐼𝑛).

• If 𝑉1, 𝑉𝑛 are orthogonal subspaces of ℝ𝑛 with dimensions 𝑛1, 𝑛2 such that

ℝ𝑛 = 𝑉1
⟂
⊕ 𝑉2.

• If 𝑍1, 𝑍2 are orthogonal of Z on 𝑉1 and 𝑉2 i.e. 𝑍1 = Π𝑉1
(Z) = Π1Y and 𝑍2 = Π𝑉2

(Z) = Π2Y
(Π1 and Π2 being projection matrices) then:

• 𝑧1, 𝑍2 are independent gaussian vectors, 𝑍1 ∼ 𝒩𝑛1
(0𝑛, Π1) and 𝑍2 ∼ 𝒩(0𝑛2

, Π2).

In particular ‖𝑍1‖ ∼ 𝜒2(𝑛1) and ‖𝑍2‖ ∼ 𝜒2(𝑛2).

𝑍2 = Π𝑉1
(Z) is the projection of Z on subspace 𝑉1.

…

Property 2 (Estimators properties in the linear model). According to Theorem 2.6,

𝑚̂ is independent from 𝜎̂2

‖Y −Π𝑉(Y)‖2 = ‖𝜀 − Π𝑉(𝜀)‖2 = ‖Π⟂
𝑉 (𝜀)‖2

𝑚̂ = X ̂𝛽
𝑚̂ is the estimation of the mean.

𝜋 Definition 9: Chi 2 distribution

If 𝑋1,… ,𝑋𝑛 i.i.d. ∼ 𝒩(0, 1), then;,

𝑋2
1 +…𝑋2

𝑛 ∼ 𝜒2
𝑛

10



2. Linear Model

2.6.1. Estimator’s properties
Π𝑉 = X(X𝑇X)−1X𝑇

𝑚̂ = X ̂𝛽 = X(X𝑇X)−1X𝑇Y

so

= Π𝑉Y

According to Cochran theorem, we can deduce that the estimator of the predicted value 𝑚̂ is independent
𝜎̂2

All the sum of squares follows a 𝜒2 distribution.

2.6.2. Estimators properties
• 𝑚̂ is unbiased and estimator of 𝑚;

• 𝔼(𝜎̂2) = 𝜎2(𝑛 − 𝑞)/𝑛 𝜎̂2 is a biased estimator of 𝜎2.

𝑆2 = 1
𝑛 − 𝑞

‖Y −Π𝑉‖2

is an unbiased estimator of 𝜎2.

We can derive statistical test from these properties.

2.7. Statistical tests
2.7.1. Student 𝑡-test

̂𝜃 − 𝜃

√ 𝕍̂( ̂𝜃)
𝑛

∼
𝐻0

𝑡𝑛−𝑞

where

Estimation of 𝜎2 A biased estimator of 𝜎2 is:

̂𝜎2 = ?

𝑆2 is the unbiased estimator of 𝜎2

𝑆2 = 1
𝑛 − 𝑞

‖Y −Π𝑉(Y)‖2

= 1
𝑛 − 𝑞

𝑛
∑
𝑖=1

(𝑌𝑖 − (X ̂𝛽)𝑖)2

11



2. Linear Model

INFO Remark 3: On 𝑚̂

Y = X𝛽 + 𝜀 ⇔ 𝔼(Y) = X𝛽

2.8. Student test of nullity of a
parameter

Let 𝛽𝑗 be a parameter, the tested hypotheses are as follows:

{
(𝐻0) ∶ 𝛽𝑗 = 0
(𝐻1) ∶ 𝛽𝑗 ≠ 0

Under the null hypothesis:

̂𝛽𝑗 − 𝛽𝑗

𝑆√(X𝑇X)1
𝑗,𝑗

∼ 𝒮t(𝑛 − 𝑞).

The test statistic is:

𝑊𝑛 =
̂𝛽𝑗

𝑆√(X𝑇X)−1
𝑗,𝑗

∼
𝐻0

𝒮t(𝑛 − 𝑞).

̂𝛽 is a multinormal vector.
Let’s consider a vector of 4 values:

⎛⎜⎜⎜⎜⎜
⎝

̂𝛽0
̂𝛽1
̂𝛽2
̂𝛽3

⎞⎟⎟⎟⎟⎟
⎠

∼ 𝒩4

⎛⎜⎜⎜⎜⎜
⎝

⎛⎜⎜⎜⎜⎜
⎝

𝛽0
𝛽1
𝛽2
𝛽3

⎞⎟⎟⎟⎟⎟
⎠

;𝜎2 (X𝑇X)−1
⎞⎟⎟⎟⎟⎟
⎠

Let ℳ be the following model

𝑌𝑖 = 𝛽0 + 𝛽1𝑋1𝑖 + 𝛽2𝑋2𝑖 + 𝛽3𝑋3𝑖 + 𝜀𝑖

Why can’t we use the following model to test each of the parameters values (here for 𝑋2)?

𝑌𝑖 = 𝜃0 + 𝜃1𝑋2𝑖 + 𝜀𝑖

We can’t use such a model, we would probably meet a confounding factor: even if we are only interested
in relationship 𝑋2 with 𝑌, we have to fit the whole model.

CLIPBOARD Example 2: Confounding parameter

Let 𝑌 be a variable related to the lung cancer. Let 𝑋1 be the smoking status, and 𝑋2 the variable
‘alcohol’ (for instance the quantity of alcohol drunk per week).
If we only fit the model ℳ ∶ 𝑌𝑖 = 𝜃0 + 𝜃1𝑋2𝑖 + 𝜀𝑖, we could conclude for a relationship between
alcohol and lung cancer, because alcohol consumption and smoking is strongly related. If we had fit
the model ℳ = 𝑌𝑖 = 𝜃0 + 𝜃1𝑋1𝑖 + 𝜃2𝑋2𝑖 + 𝜀𝑖, we could indeed have found no significant relationship
between 𝑋2 and 𝑌.

12



2. Linear Model

𝜋 Definition 10: Student law

Let 𝑋 and 𝑌 be two random variables such as 𝑋⟂⟂𝑌, and such that 𝑋 ∼ 𝒩(0, 1) and 𝑌 ∼ 𝜒2
𝑛, then

𝑋√
𝑌

∼ 𝒮t(𝑛)

2.8.1. Model comparison
𝜋 Definition 11: Nested models

Let ℳ2 and ℳ4 be two models:
ℳ2 ∶ 𝑌𝑖 = 𝛽0 + 𝛽3𝑋3𝑖

+ 𝜀𝑖
ℳ4 ∶ 𝑌𝑖 = 𝛽0 + 𝛽1𝑋1𝑖 + 𝛽2𝑋2𝑖 + 𝛽3𝑋3𝑖 + 𝜀𝑖
ℳ2 is nested in ℳ4.

Principle We compare the residual variances of the two models, that is, the variance that is not
explained by the model.

The better the model is, the smallest the variance would be.
If everything is explained by the model, the residual variance would be null.
Here ℳ4 holds all the information found in ℳ2 plus other informations. In the worst case It would be

at least as good as ℳ2.

2.8.2. Fisher 𝐹-test of model comparison
Let ℳ𝑞 and ℳ𝑞′ be two models such as dim(ℳ𝑞) = 𝑞, dim(ℳ𝑞′) = 𝑞′, 𝑞 > 𝑞′ and ℳ𝑞′ is nested in ℳ𝑞.

Tested hypotheses

{
(𝐻0) ∶ ℳ𝑞′ is the proper model
(𝐻1) ∶ ℳ𝑞 is a better model

ESS Estimated Sum of Squares

RSS Residual Sum of Squares

EMS Estimates Mean Square

RMS Residual Mean Square

𝐸𝑆𝑆 = 𝑅𝑆𝑆(ℳ𝑞′) − 𝑅𝑆𝑆(ℳ𝑞)

𝑅𝑆𝑆(ℳ) = ‖Y − X ̂𝛽‖ =
𝑛

∑
𝑖=1

̂𝜀2
𝑖

𝐸𝑀𝑆 = 𝐸𝑆𝑆
𝑞 − 𝑞′

𝑅𝑀𝑆 =
𝑅𝑆𝑆(ℳ𝑞)

𝑛 − 𝑞
Under the null hypotheses:

𝐹 = 𝐸𝑀𝑆
𝑅𝑀𝑆

∼
𝐻0

ℱ(𝑞 − 𝑞′; 𝑛 − 𝑞)

13



2. Linear Model

2.9. Model validity
Assumptions:

• X is a full rank matrix;

• Residuals are i.i.d. 𝜀 ∼ 𝒩(0𝑛, 𝜎2ℐ𝑛);

We have also to look for influential variables.

2.9.1. X is full rank
To check that the rank of the matrix is 𝑝+1, we can calculate the eigen value of the correlation value of the
matrix. If there is a perfect relationship between two variables (two columns of X), one of the eigen value
would be null. In practice, we never get a null eigen value. We consider the condition index as the ratio
between the largest and the smallest eigenvalues, if the condition index 𝜅 = 𝜆1

𝜆𝑝
, with 𝜆1 ≥ 𝜆2 ≥ … ≥ 𝜆𝑝

the eigenvalues.
If all eigenvalues is different from 0, X𝑇X can be inverted, but the estimated parameter variance would

be large, thus the estimation of the parameters would be not relevant (not good enough).

Variance Inflation Factor Perform a regression of each of the predictors against the other predictors.
If there is a strong linear relationship between a parameter and the others, it would reflect that the

coefficient of determination 𝑅2 (the amount of variance explained by the model) for this model, which
would mean that there is a strong relationship between the parameters.

We do this for all parameters, and for parameter 𝑗 = 1,… , 𝑝, the variance inflation factor would be:

𝑉 𝐼𝐹𝑗 = 1
1 − 𝑅2

𝑗
.

Rule If 𝑉 𝐼𝐹 > 10 or 𝑉 𝐼𝐹 > 100…
In case of multicollinearity, we have to remove the variable one by one until there is no longer

multicollinearity. Variables have to be removed based on statistical results and through discussion with
experimenters.

2.9.2. Residuals analysis
Assumption

𝜀 ∼ 𝒩𝑛(0𝑛, 𝜎2𝐼𝑛)

Normality of the residuals If 𝜀𝑖 (𝑖 = 1,… , 𝑛) could be observed we could build a QQ-plot of 𝜀𝑖/𝜎
against quantiles of 𝒩(0, 1).

Only the residual errors ̂𝑒𝑖 can be observed:
Let 𝑒∗

𝑖 be the studentized residual, considered as estimators of 𝜀𝑖

𝑒∗
𝑖 = ̂𝑒𝑖

√𝜎2
(𝑖)(1−𝐻𝑖𝑖)

̂𝑌 = 𝑋 ̂𝛽
= 𝑋((𝑋𝑇𝑋)−1𝑋𝑇𝑌)
= 𝑋(𝑋𝑇𝑋)−1𝑋𝑇⏟⏟⏟⏟⏟⏟⏟

𝐻

𝑌

14



2. Linear Model

Centered residuals If (1,… , 1)𝑇 belongs to X 𝔼(𝜀) = 0, by construction.

Independence We do not have a statistical test for independence in R, we would plot the residuals 𝑒
against X ̂𝛽.

Homoscedastiscity Plot the
√
𝑒∗ against X ̂𝛽.

Influential observations We make the distinction between observations:

• With too large residual → Influence on the estimation of 𝜎2

• Which are too isolated → Influence on the estimation of 𝛽

𝑒∗
𝑖 ∼ 𝒮t(𝑛 − 𝑝 − 1)

Rule We consider an observation to be aberrant if:

𝑒∗
𝑖 > F−1

𝒮t(𝑛−𝑝−1)(1 − 𝛼)

quantile of order 1 − 𝛼, 𝛼 being often set as 1/𝑛, or we set the threshold to 2.

Leverage Leverage is the diagonal term of the orthogonal projection matrix(?) 𝐻𝑖𝑖.

Property 3. • 0 ≤ 𝐻𝑖𝑖 ≤ 1

• ∑𝑖 𝐻𝑖𝑖 = 𝑝

Rule We consider that the observation is aberrant if the leverage is ??.

Non-linearity

2.10. Model Selection
We want to select the best model with the smallest number of predictors.

When models have too many explicative variables, the power of statistical tests decreases.
Different methods:

• Comparison of nested models;

• Information criteria;

• Method based on the prediction error.

2.10.1. Information criteria
Likelihood
𝜋 Definition 12: Likelihood

Probability to observe what we observed for a particular model.

𝐿𝑛(ℳ(𝑘))

15



2. Linear Model

𝜋 Definition 13: Akaike Information Criterion

𝐴𝐼𝐶(ℳ(𝑘)) = −2 log𝐿𝑛(ℳ(𝑘)) + 2𝑘.

2𝑘 is a penalty, leading to privilege the smallest model.

𝜋 Definition 14: Bayesian Information Criterion

𝐵𝐼𝐶(ℳ(𝑘)) = −2 log𝐿𝑛(ℳ(𝑘)) + log(𝑛)𝑘.

log(𝑛)𝑘 is a penalty.

Usually 𝐴𝐼𝐶 have smaller penalty than 𝐵𝐼𝐶, thus 𝐴𝐼𝐶 criterion tends to select models with more
variables than 𝐵𝐼𝐶 criterion.

2.10.2. Stepwise
forward Add new predictor iteratively, beginning with the most contributing predictors.

backward Remove predictors iteratively.

stepwise Combination of forward and backward selection. We start by no predictors. We add predictor.
Before adding the predictor, we check whether all previously predictors remain meaningful.

The problem with this iterative regression, is that at each step we make a test. We have to reduce the
confidence level for multiple test.

In practice, the multiple testing problem is not taken into account in these approaches.
We can use information criteria or model comparison in these methods.

2.11. Predictions
Let 𝑋𝑖 the 𝑖-th row of the matrix X. The observed value 𝑌𝑖 can be estimated by:

̂𝑌𝑖 = (X ̂𝛽)𝑖 = 𝑋𝑖
̂𝛽

𝔼( ̂𝑌𝑖) = (X𝛽)𝑖 = 𝑋𝑖𝛽

𝜎−1(X ̂𝛽 − X𝛽) ∼ 𝒩(0𝑝+1, (X𝑇X)−1), and

Var( ̂𝑌𝑖) = ...
𝑆2 = ‖...‖

Prediction Confidence Interval We can build confidence interval for predicted values (X ̂𝛽)𝑖
…

Prediction error of 𝑌

16
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3Elements of
Linear

Algebra
INFO Remark 4: vector

Let 𝑢 a vector, we will use interchangeably the following notations: 𝑢 and 𝑢⃗

Let 𝑢 = ⎛⎜⎜
⎝

𝑢1
⋮
𝑢𝑛

⎞⎟⎟
⎠

and 𝑣 = ⎛⎜⎜
⎝

𝑣1
⋮
𝑣𝑛

⎞⎟⎟
⎠

𝜋 Definition 15: Scalar Product (Dot Product)

⟨𝑢, 𝑣⟩ = (𝑢1,… , 𝑢𝑣)
⎛⎜⎜
⎝

𝑣1
⋮
𝑣𝑛

⎞⎟⎟
⎠

= 𝑢1𝑣1 + 𝑢2𝑣2 +…+ 𝑢𝑛𝑣𝑛

We may use ⟨𝑢, 𝑣⟩ or 𝑢 ⋅ 𝑣 notations.

Dot product properties

Commutative ⟨𝑢, 𝑣⟩ = ⟨𝑣, 𝑢⟩

Distributive ⟨(𝑢 + 𝑣), 𝑤⟩ = ⟨𝑢,𝑤⟩ + ⟨𝑣, 𝑤⟩

⟨𝑢, 𝑣⟩ = ‖𝑢‖ × ‖𝑣‖ × cos(𝑢, 𝑣)

⟨𝑎, 𝑎⟩ = ‖𝑎‖2

18



3. Elements of Linear Algebra

‖u− v‖

u

−u

v

Figure 3.1. Scalar product of two orthogonal vectors.

𝜋 Definition 16: Norm

Length of the vector.

‖𝑢‖ = √⟨𝑢, 𝑣⟩

‖𝑢, 𝑣‖ > 0

𝜋 Definition 17: Distance

𝑑𝑖𝑠𝑡(𝑢, 𝑣) = ‖𝑢 − 𝑣‖

𝜋 Definition 18: Orthogonality

INFO Remark 5

(𝑑𝑖𝑠𝑡(𝑢, 𝑣))2 = ‖𝑢 − 𝑣‖2,

and

⟨𝑣 − 𝑢, 𝑣 − 𝑢⟩

⟨𝑣 − 𝑢, 𝑣 − 𝑢⟩ = ⟨𝑣, 𝑣⟩ + ⟨𝑢, 𝑢⟩ − 2⟨𝑢, 𝑣⟩
= ‖𝑣‖2 + ‖𝑢‖2

= −2⟨𝑢, 𝑣⟩

‖𝑢 − 𝑣‖2 = ‖𝑢‖2 + ‖𝑣‖2 − 2⟨𝑢, 𝑣⟩
‖𝑢 + 𝑣‖2 = ‖𝑢‖2 + ‖𝑣‖2 + 2⟨𝑢, 𝑣⟩
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3. Elements of Linear Algebra

𝜋 Proposition 1: Scalar product of orthogonal vectors

𝑢 ⟂ 𝑣 ⇔ ⟨𝑢, 𝑣⟩ = 0

Indeed. ‖𝑢 − 𝑣‖2 = ‖𝑢 + 𝑣‖2, as illustrated in Figure 3.1.

⇔− 2⟨𝑢, 𝑣⟩ = 2⟨𝑢, 𝑣⟩
⇔4⟨𝑢, 𝑣⟩ = 0
⇔⟨𝑢, 𝑣⟩ = 0

𝜋 Theorem 2: Pythagorean theorem

If 𝑢 ⟂ 𝑣, then ‖𝑢 + 𝑣‖2 = ‖𝑢‖2 + ‖𝑣‖2 .

𝜋 Definition 19: Orthogonal Projection

Let 𝑦 = ⎛⎜⎜
⎝

𝑦1
.
𝑦𝑛

⎞⎟⎟
⎠

∈ ℝ𝑛 and 𝑤 a subspace of ℝ𝑛. 𝒴 can be written as the orthogonal projection of 𝑦 on 𝑤:

𝒴 = 𝑝𝑟𝑜𝑗𝑤(𝑦) + 𝑧,

where

{
𝑧 ∈ 𝑤⟂

𝑝𝑟𝑜𝑗𝑤(𝑦) ∈ 𝑤

There is only one vector 𝒴 that ?
The scalar product between 𝑧 and (?) is zero.

Property 4. 𝑝𝑟𝑜𝑗𝑤(𝑦) is the closest vector to 𝑦 that belongs to 𝑤.

𝜋 Definition 20: Matrix

A matrix is an application, that is, a function that transform a thing into another, it is a linear
function.

CLIPBOARD Example 3: Matrix application

Let 𝐴 be a matrix:

𝐴 = (𝑎 𝑏
𝑐 𝑑

)

and

𝑥 = (𝑥1
𝑥2

)

20



3. Elements of Linear Algebra

x x

y

x

y

z

Figure 3.2. Coordinate systems

CLIPBOARD Example 3 continued

Then,

𝐴𝑥 = (𝑎 𝑏
𝑐 𝑑

)(𝑥1
𝑥2

)

= (𝑎𝑥1 + 𝑏𝑥2
𝑐𝑥1 + 𝑑𝑥2

)

Similarly,

⎛⎜⎜
⎝

𝑎 𝑏 𝑐 𝑑
𝑒 𝑓 𝑔 ℎ
𝑖 𝑗 𝑘 𝑙

⎞⎟⎟
⎠

⎛⎜⎜⎜⎜⎜
⎝

𝑥1
𝑥2
𝑥3
𝑥4

⎞⎟⎟⎟⎟⎟
⎠

= ⎛⎜⎜
⎝

𝑎𝑥1 + 𝑏𝑥2 + 𝑐𝑥3 + 𝑑𝑥4
𝑒𝑥1 + 𝑓𝑥2 + 𝑔𝑥3 + ℎ𝑥4
𝑖𝑥1 + 𝑗𝑥2 + 𝑘𝑥3 + 𝑙𝑥4

⎞⎟⎟
⎠

The number of columns has to be the same as the dimension of the vector to which the matrix is
applied.

𝜋 Definition 21: Tranpose of a Matrix

Let 𝐴 = (𝑎 𝑏
𝑐 𝑑

), then 𝐴𝑇 = (𝑎 𝑐
𝑏 𝑑

)
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