feat: Reinitialize commit
This commit is contained in:
commit
9af6993a28
|
@ -0,0 +1,2 @@
|
|||
main.pdf filter=lfs diff=lfs merge=lfs -text
|
||||
**/*.pdf filter=lfs diff=lfs merge=lfs -text
|
|
@ -0,0 +1,304 @@
|
|||
build/
|
||||
.auctex-auto
|
||||
|
||||
## Core latex/pdflatex auxiliary files:
|
||||
*.aux
|
||||
*.lof
|
||||
*.log
|
||||
*.lot
|
||||
*.fls
|
||||
*.out
|
||||
*.toc
|
||||
*.fmt
|
||||
*.fot
|
||||
*.cb
|
||||
*.cb2
|
||||
.*.lb
|
||||
|
||||
## Intermediate documents:
|
||||
*.dvi
|
||||
*.xdv
|
||||
*-converted-to.*
|
||||
# these rules might exclude image files for figures etc.
|
||||
# *.ps
|
||||
# *.eps
|
||||
# *.pdf
|
||||
|
||||
## Generated if empty string is given at "Please type another file name for output:"
|
||||
.pdf
|
||||
|
||||
## Bibliography auxiliary files (bibtex/biblatex/biber):
|
||||
*.bbl
|
||||
*.bcf
|
||||
*.blg
|
||||
*-blx.aux
|
||||
*-blx.bib
|
||||
*.run.xml
|
||||
|
||||
## Build tool auxiliary files:
|
||||
*.fdb_latexmk
|
||||
*.synctex
|
||||
*.synctex(busy)
|
||||
*.synctex.gz
|
||||
*.synctex.gz(busy)
|
||||
*.pdfsync
|
||||
|
||||
## Build tool directories for auxiliary files
|
||||
# latexrun
|
||||
latex.out/
|
||||
|
||||
## Auxiliary and intermediate files from other packages:
|
||||
# algorithms
|
||||
*.alg
|
||||
*.loa
|
||||
|
||||
# achemso
|
||||
acs-*.bib
|
||||
|
||||
# amsthm
|
||||
*.thm
|
||||
|
||||
# beamer
|
||||
*.nav
|
||||
*.pre
|
||||
*.snm
|
||||
*.vrb
|
||||
|
||||
# changes
|
||||
*.soc
|
||||
|
||||
# comment
|
||||
*.cut
|
||||
|
||||
# cprotect
|
||||
*.cpt
|
||||
|
||||
# elsarticle (documentclass of Elsevier journals)
|
||||
*.spl
|
||||
|
||||
# endnotes
|
||||
*.ent
|
||||
|
||||
# fixme
|
||||
*.lox
|
||||
|
||||
# feynmf/feynmp
|
||||
*.mf
|
||||
*.mp
|
||||
*.t[1-9]
|
||||
*.t[1-9][0-9]
|
||||
*.tfm
|
||||
|
||||
#(r)(e)ledmac/(r)(e)ledpar
|
||||
*.end
|
||||
*.?end
|
||||
*.[1-9]
|
||||
*.[1-9][0-9]
|
||||
*.[1-9][0-9][0-9]
|
||||
*.[1-9]R
|
||||
*.[1-9][0-9]R
|
||||
*.[1-9][0-9][0-9]R
|
||||
*.eledsec[1-9]
|
||||
*.eledsec[1-9]R
|
||||
*.eledsec[1-9][0-9]
|
||||
*.eledsec[1-9][0-9]R
|
||||
*.eledsec[1-9][0-9][0-9]
|
||||
*.eledsec[1-9][0-9][0-9]R
|
||||
|
||||
# glossaries
|
||||
*.acn
|
||||
*.acr
|
||||
*.glg
|
||||
*.glo
|
||||
*.gls
|
||||
*.glsdefs
|
||||
*.lzo
|
||||
*.lzs
|
||||
*.slg
|
||||
*.slo
|
||||
*.sls
|
||||
|
||||
# uncomment this for glossaries-extra (will ignore makeindex's style files!)
|
||||
# *.ist
|
||||
|
||||
# gnuplot
|
||||
*.gnuplot
|
||||
*.table
|
||||
|
||||
# gnuplottex
|
||||
*-gnuplottex-*
|
||||
|
||||
# gregoriotex
|
||||
*.gaux
|
||||
*.glog
|
||||
*.gtex
|
||||
|
||||
# htlatex
|
||||
*.4ct
|
||||
*.4tc
|
||||
*.idv
|
||||
*.lg
|
||||
*.trc
|
||||
*.xref
|
||||
|
||||
# hyperref
|
||||
*.brf
|
||||
|
||||
# knitr
|
||||
*-concordance.tex
|
||||
# TODO Uncomment the next line if you use knitr and want to ignore its generated tikz files
|
||||
# *.tikz
|
||||
*-tikzDictionary
|
||||
|
||||
# listings
|
||||
*.lol
|
||||
|
||||
# luatexja-ruby
|
||||
*.ltjruby
|
||||
|
||||
# makeidx
|
||||
*.idx
|
||||
*.ilg
|
||||
*.ind
|
||||
|
||||
# minitoc
|
||||
*.maf
|
||||
*.mlf
|
||||
*.mlt
|
||||
*.mtc[0-9]*
|
||||
*.slf[0-9]*
|
||||
*.slt[0-9]*
|
||||
*.stc[0-9]*
|
||||
|
||||
# minted
|
||||
_minted*
|
||||
*.pyg
|
||||
|
||||
# morewrites
|
||||
*.mw
|
||||
|
||||
# newpax
|
||||
*.newpax
|
||||
|
||||
# nomencl
|
||||
*.nlg
|
||||
*.nlo
|
||||
*.nls
|
||||
|
||||
# pax
|
||||
*.pax
|
||||
|
||||
# pdfpcnotes
|
||||
*.pdfpc
|
||||
|
||||
# sagetex
|
||||
*.sagetex.sage
|
||||
*.sagetex.py
|
||||
*.sagetex.scmd
|
||||
|
||||
# scrwfile
|
||||
*.wrt
|
||||
|
||||
# svg
|
||||
svg-inkscape/
|
||||
|
||||
# sympy
|
||||
*.sout
|
||||
*.sympy
|
||||
sympy-plots-for-*.tex/
|
||||
|
||||
# pdfcomment
|
||||
*.upa
|
||||
*.upb
|
||||
|
||||
# pythontex
|
||||
*.pytxcode
|
||||
pythontex-files-*/
|
||||
|
||||
# tcolorbox
|
||||
*.listing
|
||||
|
||||
# thmtools
|
||||
*.loe
|
||||
|
||||
# TikZ & PGF
|
||||
*.dpth
|
||||
*.md5
|
||||
*.auxlock
|
||||
|
||||
# titletoc
|
||||
*.ptc
|
||||
|
||||
# todonotes
|
||||
*.tdo
|
||||
|
||||
# vhistory
|
||||
*.hst
|
||||
*.ver
|
||||
|
||||
# easy-todo
|
||||
*.lod
|
||||
|
||||
# xcolor
|
||||
*.xcp
|
||||
|
||||
# xmpincl
|
||||
*.xmpi
|
||||
|
||||
# xindy
|
||||
*.xdy
|
||||
|
||||
# xypic precompiled matrices and outlines
|
||||
*.xyc
|
||||
*.xyd
|
||||
|
||||
# endfloat
|
||||
*.ttt
|
||||
*.fff
|
||||
|
||||
# Latexian
|
||||
TSWLatexianTemp*
|
||||
|
||||
## Editors:
|
||||
# WinEdt
|
||||
*.bak
|
||||
*.sav
|
||||
|
||||
# Texpad
|
||||
.texpadtmp
|
||||
|
||||
# LyX
|
||||
*.lyx~
|
||||
|
||||
# Kile
|
||||
*.backup
|
||||
|
||||
# gummi
|
||||
.*.swp
|
||||
|
||||
# KBibTeX
|
||||
*~[0-9]*
|
||||
|
||||
# TeXnicCenter
|
||||
*.tps
|
||||
|
||||
# auto folder when using emacs and auctex
|
||||
./auto/*
|
||||
*.el
|
||||
|
||||
# expex forward references with \gathertags
|
||||
*-tags.tex
|
||||
|
||||
# standalone packages
|
||||
*.sta
|
||||
|
||||
# Makeindex log files
|
||||
*.lpz
|
||||
|
||||
# xwatermark package
|
||||
*.xwm
|
||||
|
||||
# REVTeX puts footnotes in the bibliography by default, unless the nofootinbib
|
||||
# option is specified. Footnotes are the stored in a file with suffix Notes.bib.
|
||||
# Uncomment the next line to have this generated file ignored.
|
||||
#*Notes.bib
|
|
@ -0,0 +1,6 @@
|
|||
options=-shell-escape -file-line-error
|
||||
|
||||
all: main.pdf
|
||||
|
||||
%.pdf: %.tex
|
||||
lualatex $(options) $<
|
|
@ -0,0 +1,18 @@
|
|||
%----------------------------------------
|
||||
% CHAPTERS
|
||||
%----------------------------------------
|
||||
|
||||
\newcommand{\includechapters}[2]{%
|
||||
\foreach \i in {0, ..., #2} {%
|
||||
\edef\FileName{content/chapters/#1/\i}%
|
||||
\IfFileExists{\FileName}{%
|
||||
\input{\FileName}%
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
\includechapters{part1}{4}
|
||||
|
||||
\includechapters{part2}{2}
|
||||
|
||||
% \includechapters{part3}{1}
|
|
@ -0,0 +1 @@
|
|||
\part{}
|
|
@ -0,0 +1,653 @@
|
|||
\chapter{Linear Model}
|
||||
|
||||
\section{Simple Linear Regression}
|
||||
|
||||
\[
|
||||
Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i
|
||||
\]
|
||||
\[
|
||||
\Y = \X \beta + \varepsilon.
|
||||
\]
|
||||
\[
|
||||
\begin{pmatrix}
|
||||
Y_1 \\
|
||||
Y_2 \\
|
||||
\vdots \\
|
||||
Y_n
|
||||
\end{pmatrix}
|
||||
=
|
||||
\begin{pmatrix}
|
||||
1 & X_1 \\
|
||||
1 & X_2 \\
|
||||
\vdots & \vdots \\
|
||||
1 & X_n
|
||||
\end{pmatrix}
|
||||
\begin{pmatrix}
|
||||
\beta_0 \\
|
||||
\beta_1
|
||||
\end{pmatrix}
|
||||
+
|
||||
\begin{pmatrix}
|
||||
\varepsilon_1 \\
|
||||
\varepsilon_2 \\
|
||||
\vdots
|
||||
\varepsilon_n
|
||||
\end{pmatrix}
|
||||
\]
|
||||
|
||||
\paragraph*{Assumptions}
|
||||
\begin{enumerate}[label={\color{primary}{($A_\arabic*$)}}]
|
||||
\item $\varepsilon_i$ are independent;
|
||||
\item $\varepsilon_i$ are identically distributed;
|
||||
\item $\varepsilon_i$ are i.i.d $\sim \Norm(0, \sigma^2)$ (homoscedasticity).
|
||||
\end{enumerate}
|
||||
|
||||
\section{Generalized Linear Model}
|
||||
|
||||
\[
|
||||
g(\EE(Y)) = X \beta
|
||||
\]
|
||||
with $g$ being
|
||||
\begin{itemize}
|
||||
\item Logistic regression: $g(v) = \log \left(\frac{v}{1-v}\right)$, for instance for boolean values,
|
||||
\item Poisson regression: $g(v) = \log(v)$, for instance for discrete variables.
|
||||
\end{itemize}
|
||||
|
||||
\subsection{Penalized Regression}
|
||||
|
||||
When the number of variables is large, e.g, when the number of explanatory variable is above the number of observations, if $p >> n$ ($p$: the number of explanatory variable, $n$ is the number of observations), we cannot estimate the parameters.
|
||||
In order to estimate the parameters, we can use penalties (additional terms).
|
||||
|
||||
Lasso regression, Elastic Net, etc.
|
||||
|
||||
\[
|
||||
Y = X \beta + \varepsilon,
|
||||
\]
|
||||
is noted equivalently as
|
||||
\[
|
||||
\begin{pmatrix}
|
||||
y_1 \\
|
||||
y_2 \\
|
||||
y_3 \\
|
||||
y_4
|
||||
\end{pmatrix}
|
||||
= \begin{pmatrix}
|
||||
1 & x_{11} & x_{12} \\
|
||||
1 & x_{21} & x_{22} \\
|
||||
1 & x_{31} & x_{32} \\
|
||||
1 & x_{41} & x_{42}
|
||||
\end{pmatrix}
|
||||
\begin{pmatrix}
|
||||
\beta_0 \\
|
||||
\beta_1 \\
|
||||
\beta_2
|
||||
\end{pmatrix} +
|
||||
\begin{pmatrix}
|
||||
\varepsilon_1 \\
|
||||
\varepsilon_2 \\
|
||||
\varepsilon_3 \\
|
||||
\varepsilon_4
|
||||
\end{pmatrix}.
|
||||
\]
|
||||
\section{Parameter Estimation}
|
||||
|
||||
\subsection{Simple Linear Regression}
|
||||
|
||||
\subsection{General Case}
|
||||
|
||||
If $\X^T\X$ is invertible, the OLS estimator is:
|
||||
\begin{equation}
|
||||
\hat{\beta} = (\X^T\X)^{-1} \X^T \Y
|
||||
\end{equation}
|
||||
|
||||
\subsection{Ordinary Least Square Algorithm}
|
||||
|
||||
We want to minimize the distance between $\X\beta$ and $\Y$:
|
||||
\[
|
||||
\min \norm{\Y - \X\beta}^2
|
||||
\]
|
||||
(See \autoref{ch:elements-of-linear-algebra}).
|
||||
\begin{align*}
|
||||
\Rightarrow& \X \beta = proj^{(1, \X)} \Y\\
|
||||
\Rightarrow& \forall v \in w,\, vy = v proj^w(y)\\
|
||||
\Rightarrow& \forall i: \\
|
||||
& \X_i \Y = \X_i \X\hat{\beta} \qquad \text{where $\hat{\beta}$ is the estimator of $\beta$} \\
|
||||
\Rightarrow& \X^T \Y = \X^T \X \hat{\beta} \\
|
||||
\Rightarrow& {\color{gray}(\X^T \X)^{-1}} \X^T \Y = {\color{gray}(\X^T \X)^{-1}} (\X^T\X) \hat{\beta} \\
|
||||
\Rightarrow& \hat{\beta} = (\X^T\X)^{-1} \X^T \Y
|
||||
\end{align*}
|
||||
|
||||
This formula comes from the orthogonal projection of $\Y$ on the vector subspace defined by the explanatory variables $\X$
|
||||
|
||||
$\X \hat{\beta}$ is the closest point to $\Y$ in the subspace generated by $\X$.
|
||||
|
||||
If $H$ is the projection matrix of the subspace generated by $\X$, $\X\Y$ is the projection on $\Y$ on this subspace, that corresponds to $\X\hat{\beta}$.
|
||||
|
||||
\section{Sum of squares}
|
||||
|
||||
$\Y - \X \hat{\beta} \perp \X \hat{\beta} - \Y \One$ if $\One \in V$, so
|
||||
\[
|
||||
\underbrace{\norm{\Y - \bar{\Y}\One}}_{\text{Total SS}} = \underbrace{\norm{\Y - \X \hat{\beta}}^2}_{\text{Residual SS}} + \underbrace{\norm{\X \hat{\beta} - \bar{\Y} \One}^2}_{\text{Explicated SS}}
|
||||
\]
|
||||
|
||||
\section{Coefficient of Determination: \texorpdfstring{$R^2$}{R\textsuperscript{2}}}
|
||||
\begin{definition}[$R^2$]
|
||||
\[
|
||||
0 \leq R^2 = \frac{\norm{\X\hat{\beta} - \bar{\Y}\One}^2}{\norm{\Y - \bar{\Y}\One}^2} = 1 - \frac{\norm{\Y - \X\hat{\beta}}^2}{\norm{\Y - \bar{\Y}\One}^2} \leq 1
|
||||
\] proportion of variation of $\Y$ explained by the model.
|
||||
\end{definition}
|
||||
|
||||
\begin{figure}
|
||||
\centering
|
||||
\includegraphics{figures/schemes/orthogonal_projection.pdf}
|
||||
\caption{Orthogonal projection of $\Y$ on plan generated by the base described by $\X$. $\color{blue}a$ corresponds to $\norm{\X\hat{\beta} - \bar{\Y}}^2$ and $\color{blue}b$ corresponds to $\hat{\varepsilon} = \norm{\Y - \hat{\beta}\X}^2$} and $\color{blue}c$ corresponds to $\norm{Y - \bar{Y}}^2$.
|
||||
\label{fig:scheme-orthogonal-projection}
|
||||
\end{figure}
|
||||
|
||||
\begin{figure}
|
||||
\centering
|
||||
\includegraphics{figures/schemes/ordinary_least_squares.pdf}
|
||||
\caption{Ordinary least squares and regression line with simulated data.}
|
||||
\label{fig:ordinary-least-squares}
|
||||
\end{figure}
|
||||
|
||||
\begin{definition}[Model dimension]
|
||||
Let $\M$ be a model.
|
||||
The dimension of $\M$ is the dimension of the subspace generated by $\X$, that is the number of parameters in the $\beta$ vector.
|
||||
|
||||
\textit{Nb.} The dimension of the model is not the number of parameter, as $\sigma^2$ is one of the model parameters.
|
||||
\end{definition}
|
||||
|
||||
\section{Gaussian vectors}
|
||||
|
||||
\begin{definition}[Normal distribution]
|
||||
$X \sim \Norm(\mu, \sigma^{2})$, with density function $f$
|
||||
\[
|
||||
f(x) = \frac{1}{\sigma \sqrt{2\pi}}e^{-\frac{1}{2}(\frac{x-\mu}{\sigma})^{2}}
|
||||
\]
|
||||
\end{definition}
|
||||
|
||||
|
||||
\begin{definition}[Gaussian vector]
|
||||
A random vector $\Y \in \RR[n]$ is a gaussian vector if every linear combination of its component is a gaussian random variable.
|
||||
\end{definition}
|
||||
|
||||
\begin{property}
|
||||
$m = \EE(Y) = (m_1, \ldots, m_n)^T$, where $m_i = \EE(Y_i)$
|
||||
|
||||
\[
|
||||
\Y \sim \Norm_n(m, \Sigma)
|
||||
\]
|
||||
where $\Sigma$ is the variance-covariance matrix!
|
||||
\[
|
||||
\Sigma = \E\left[(\Y -m)(\Y - m)^T\right].
|
||||
\]
|
||||
|
||||
\end{property}
|
||||
|
||||
\begin{remark}
|
||||
\[
|
||||
\Cov(Y_i, Y_i) = \Var(Y_i)
|
||||
\]
|
||||
\end{remark}
|
||||
|
||||
\begin{definition}[Covariance]
|
||||
\[
|
||||
\Cov(Y_i, Y_j) = \EE\left((Y_i-\EE(Y_j))(Y_j-\EE(Y_j))\right)
|
||||
\]
|
||||
\end{definition}
|
||||
|
||||
|
||||
When two variable are linked, the covariance is large.
|
||||
|
||||
If two variables $X, Y$ are independent, $\Cov(X, Y) = 0$.
|
||||
|
||||
\begin{definition}[Correlation coefficient]
|
||||
\[
|
||||
\Cor(Y_i, Y_j) = \frac{\EE\left((Y_i-\EE(Y_j))(Y_j-\EE(Y_j))\right)}{\sqrt{\EE(Y_i - \EE(Y_i)) \cdot \EE(Y_j - \EE(Y_j))}}
|
||||
\]
|
||||
\end{definition}
|
||||
|
||||
Covariance is really sensitive to scale of variables. For instance, if we measure distance in millimeters, the covariance would be larger than in the case of a measure expressed in metters. Thus the correlation coefficient, which is a sort of normalized covariance is useful, to be able to compare the values.
|
||||
|
||||
\begin{remark}
|
||||
\begin{align*}
|
||||
\Cov(Y_i, Y_i) &= \EE((Y_i - \EE(Y_i)) (Y_i - \EE(Y_i))) \\
|
||||
&= \EE((Y_i - \EE(Y_i))^2) \\
|
||||
&= \Var(Y_i)
|
||||
\end{align*}
|
||||
\end{remark}
|
||||
|
||||
\begin{equation}
|
||||
\Sigma = \begin{pNiceMatrix}
|
||||
\VVar(Y_1) & & & &\\
|
||||
& \Ddots & & & \\
|
||||
& \Cov(Y_i, Y_j) & \VVar(Y_i) & & \\
|
||||
& & & \Ddots & \\
|
||||
& & & & \VVar(Y_n)
|
||||
\end{pNiceMatrix}
|
||||
\end{equation}
|
||||
|
||||
\begin{definition}[Identity matrix]
|
||||
\[
|
||||
\mathcal{I}_n = \begin{pNiceMatrix}
|
||||
1 & 0 & 0 \\
|
||||
0 & \Ddots & 0\\
|
||||
0 & 0 & 1
|
||||
\end{pNiceMatrix}
|
||||
\]
|
||||
|
||||
\end{definition}
|
||||
|
||||
|
||||
\begin{theorem}[Cochran Theorem (Consequence)]
|
||||
\label{thm:cochran}
|
||||
Let $\mathbf{Z}$ be a gaussian vector: $\mathbf{Z} \sim \Norm_n(0_n, I_n)$.
|
||||
|
||||
\begin{itemize}
|
||||
\item If $V_1, V_n$ are orthogonal subspaces of $\RR[n]$ with dimensions $n_1, n_2$ such that
|
||||
\[
|
||||
\RR[n] = V_1 \overset{\perp}{\oplus} V_2.
|
||||
\]
|
||||
\item If $Z_1, Z_2$ are orthogonal of $\mathbf{Z}$ on $V_1$ and $V_2$ i.e. $Z_1 = \Pi_{V_1}(\mathbf{Z}) = \Pi_1 \Y$ and $Z_2 = \Pi_{V_2} (\mathbf{Z}) = \Pi_2 \Y$ ($\Pi_{1}$ and $\Pi_{2}$ being projection matrices)
|
||||
then:
|
||||
\item $z_{1}$, $Z_{2}$ are independent gaussian vectors, $Z_{1} \sim \Norm_{n_{1}} (0_{n}, \Pi_{1})$ and $Z_{2} \sim \Norm(0_{n_{2}}, \Pi_{2})$.
|
||||
|
||||
In particular $\norm{Z_{1}} \sim \chi^{2}(n_{1})$ and $\norm{Z_{2}} \sim \chi^{2}(n_{2})$.
|
||||
\end{itemize}
|
||||
|
||||
$Z_2 = \Pi_{V_1}(\Z)$ is the projection of $\Z$ on subspace $V_1$.
|
||||
|
||||
\dots
|
||||
\end{theorem}
|
||||
|
||||
\begin{property}[Estimators properties in the linear model]
|
||||
According to \autoref{thm:cochran},
|
||||
\[
|
||||
\hat{m} \text{ is independent from $\hat{\sigma}^2$}
|
||||
\]
|
||||
\[
|
||||
\norm{\Y - \Pi_V(\Y)}^2 = \norm{\varepsilon - \Pi_{V}(\varepsilon)}^{2} = \norm{\Pi_{V}^{\perp} (\varepsilon)}^{2}
|
||||
\]
|
||||
|
||||
$\hat{m} = \X \hat{\beta}$
|
||||
|
||||
$\hat{m}$ is the estimation of the mean.
|
||||
\end{property}
|
||||
|
||||
|
||||
\begin{definition}[Chi 2 distribution]
|
||||
If $X_1, \ldots, X_n$ i.i.d. $\sim \Norm(0, 1)$, then;,
|
||||
\[
|
||||
X_1^2 + \ldots X_n^2 \sim \chi_n^2
|
||||
\]
|
||||
\end{definition}
|
||||
|
||||
\subsection{Estimator's properties}
|
||||
|
||||
|
||||
\[
|
||||
\Pi_V = \X(\X^T\X)^{-1} \X^T
|
||||
\]
|
||||
|
||||
\begin{align*}
|
||||
\hat{m} &= \X \hat{\beta} = \X(\X^T\X)^{-1} \X^T \Y \\
|
||||
\intertext{so} \\
|
||||
&= \Pi_V \Y
|
||||
\end{align*}
|
||||
|
||||
According to Cochran theorem, we can deduce that the estimator of the predicted value $\hat{m}$ is independent $\hat{\sigma}^2$
|
||||
|
||||
All the sum of squares follows a $\chi^2$ distribution.
|
||||
|
||||
|
||||
\subsection{Estimators properties}
|
||||
|
||||
\begin{itemize}
|
||||
\item $\hat{m}$ is unbiased and estimator of $m$;
|
||||
\item $\EE(\hat{\sigma}^{2}) = \sigma^{2}(n-q)/n$ $\hat{\sigma}^{2}$ is a biased estimator of $\sigma^{2}$.
|
||||
\[
|
||||
S^{2} = \frac{1}{n-q} \norm{\Y - \Pi_{V}}^{2}
|
||||
\]
|
||||
is an unbiased estimator of $\sigma²$.
|
||||
\end{itemize}
|
||||
|
||||
We can derive statistical test from these properties.
|
||||
|
||||
\section{Statistical tests}
|
||||
|
||||
\subsection{Student $t$-test}
|
||||
|
||||
\[
|
||||
\frac{\hat{\theta}-\theta}{\sqrt{\frac{\widehat{\VVar}(\hat{\theta})}{n}}} \underset{H_0}{\sim} t_{n-q}
|
||||
\]
|
||||
|
||||
where
|
||||
|
||||
\paragraph{Estimation of $\sigma^2$}
|
||||
|
||||
A biased estimator of $\sigma^2$ is:
|
||||
\[
|
||||
\hat{\sigma^2} = ?
|
||||
\]
|
||||
|
||||
$S^2$ is the unbiased estimator of $\sigma^2$
|
||||
\begin{align*}
|
||||
S^2 &= \frac{1}{n-q} \norm{\Y - \Pi_V(\Y)}^2 \\
|
||||
&= \frac{1}{n-q} \sum_{i=1}^n (Y_i - (\X\hat{\beta})_i)^2
|
||||
\end{align*}
|
||||
|
||||
\begin{remark}[On $\hat{m}$]
|
||||
\begin{align*}
|
||||
&\Y = \X \beta + \varepsilon
|
||||
\Leftrightarrow& \EE(\Y) = \X \beta
|
||||
\end{align*}
|
||||
\end{remark}
|
||||
|
||||
\section{Student test of nullity of a parameter}
|
||||
|
||||
Let $\beta_j$ be a parameter, the tested hypotheses are as follows:
|
||||
\[
|
||||
\begin{cases}
|
||||
(H_0): \beta_j = 0 \\
|
||||
(H_1): \beta_j \neq 0
|
||||
\end{cases}
|
||||
\]
|
||||
|
||||
Under the null hypothesis:
|
||||
\[
|
||||
\frac{\hat{\beta}_j - \beta_j}{S \sqrt{(\X^T \X)^1_{j,j}}} \sim \St(n-q).
|
||||
\]
|
||||
The test statistic is:
|
||||
\[
|
||||
W_n = \frac{\hat{\beta}_j}{S \sqrt{(\X^T\X)^{-1}_{j,j}}} \underset{H_0}{\sim} \St(n-q).
|
||||
\]
|
||||
|
||||
$\hat{\beta}$ is a multinormal vector.
|
||||
|
||||
Let's consider a vector of 4 values:
|
||||
\begin{align*}
|
||||
\begin{pmatrix}
|
||||
\hat{\beta}_0 \\
|
||||
\hat{\beta}_1 \\
|
||||
\hat{\beta}_2 \\
|
||||
\hat{\beta}_3
|
||||
\end{pmatrix}
|
||||
\sim \Norm_4 \left( \begin{pmatrix}
|
||||
\beta_0 \\
|
||||
\beta_1 \\
|
||||
\beta_2 \\
|
||||
\beta_3
|
||||
\end{pmatrix} ;
|
||||
\sigma^2 \left(\X^T \X\right)^{-1}
|
||||
\right)
|
||||
\end{align*}
|
||||
|
||||
Let $\M$ be the following model
|
||||
\begin{align*}
|
||||
Y_i &= \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + \beta_3 X_{3i} + \varepsilon_i
|
||||
\end{align*}
|
||||
|
||||
Why can't we use the following model to test each of the parameters values (here for $X_2$)?
|
||||
\[
|
||||
Y_i = \theta_0 + \theta_1 X_{2i} + \varepsilon_i
|
||||
\]
|
||||
We can't use such a model, we would probably meet a confounding factor: even if we are only interested in relationship $X_2$ with $Y$, we have to fit the whole model.
|
||||
|
||||
\begin{example}[Confounding parameter]
|
||||
Let $Y$ be a variable related to the lung cancer. Let $X_1$ be the smoking status, and $X_2$ the variable `alcohol' (for instance the quantity of alcohol drunk per week).
|
||||
|
||||
If we only fit the model $\M: Y_i = \theta_0 + \theta_1 X_{2i} + \varepsilon_i$, we could conclude for a relationship between alcohol and lung cancer, because alcohol consumption and smoking is strongly related. If we had fit the model $\M = Y_i = \theta_0 + \theta_1 X_{1i} + \theta_2 X_{2i} + \varepsilon_i$, we could indeed have found no significant relationship between $X_2$ and $Y$.
|
||||
\end{example}
|
||||
|
||||
\begin{definition}[Student law]
|
||||
Let $X$ and $Y$ be two random variables such as $X \indep Y$, and such that $X \sim \Norm(0, 1)$ and $Y \sim \chi_n^2$, then
|
||||
\[
|
||||
\frac{X}{\sqrt{Y}} \sim \St(n)
|
||||
\]
|
||||
\end{definition}
|
||||
|
||||
\subsection{Model comparison}
|
||||
|
||||
\begin{definition}[Nested models]
|
||||
|
||||
\end{definition}
|
||||
|
||||
Let $\M_2$ and $\M_4$ be two models:
|
||||
|
||||
$\M_2: Y_i = \beta_0 + \beta_3 X_{3_i} + \varepsilon_i$
|
||||
|
||||
$\M_4: Y_i = \beta_0 + \beta_1 X_{1i} + \beta_2 X_{2i} + \beta_3 X_{3i} + \varepsilon_i$
|
||||
|
||||
$\M_2$ is nested in $\M_4$.
|
||||
|
||||
\paragraph*{Principle} We compare the residual variances of the two models, that is, the variance that is not explained by the model.
|
||||
|
||||
The better the model is, the smallest the variance would be.
|
||||
|
||||
If everything is explained by the model, the residual variance would be null.
|
||||
|
||||
|
||||
Here $\M_4$ holds all the information found in $\M_2$ plus other informations. In the worst case It would be at least as good as $\M_2$.
|
||||
|
||||
\subsection{Fisher $F$-test of model comparison}
|
||||
|
||||
Let $\M_q$ and $\M_{q'}$ be two models such as $\dim(\M_q) = q$, $\dim(\M_{q'}) = q'$, $q > q'$ and $\M_{q'}$ is nested in $\M_q$.
|
||||
|
||||
\paragraph{Tested hypotheses}
|
||||
\[
|
||||
\begin{cases}
|
||||
(H_0): \M_{q'} \text{ is the proper model} \\
|
||||
(H_1): \M_q \text{ is a better model}
|
||||
\end{cases}
|
||||
\]
|
||||
|
||||
\begin{description}
|
||||
\item[ESS] Estimated Sum of Squares
|
||||
\item[RSS] Residual Sum of Squares
|
||||
\item[EMS] Estimates Mean Square
|
||||
\item[RMS] Residual Mean Square
|
||||
\end{description}
|
||||
|
||||
\[
|
||||
ESS = RSS(\M_{q'}) - RSS(\M_q)
|
||||
\]
|
||||
\[
|
||||
RSS(\M) = \norm{\Y - \X\hat{\beta}} = \sum_{i=1}^n \hat{\varepsilon}_i^2
|
||||
\]
|
||||
\[
|
||||
EMS = \frac{ESS}{q - q'}
|
||||
\]
|
||||
\[
|
||||
RMS = \frac{RSS(\M_q)}{n-q}
|
||||
\]
|
||||
|
||||
Under the null hypotheses:
|
||||
\[
|
||||
F = \frac{EMS}{RMS} \underset{H_0}{\sim} \Fish(q-q'; n-q)
|
||||
\]
|
||||
|
||||
\section{Model validity}
|
||||
|
||||
Assumptions:
|
||||
\begin{itemize}
|
||||
\item $\X$ is a full rank matrix;
|
||||
\item Residuals are i.i.d. $\varepsilon \sim \Norm(0_n, \sigma^2 \mathcal{I}_n)$;
|
||||
\end{itemize}
|
||||
|
||||
We have also to look for influential variables.
|
||||
|
||||
|
||||
\subsection{$\X$ is full rank}
|
||||
|
||||
To check that the rank of the matrix is $p+1$, we can calculate the eigen value of the correlation value of the matrix. If there is a perfect relationship between two variables (two columns of $\X$), one of the eigen value would be null. In practice, we never get a null eigen value. We consider the condition index as the ratio between the largest and the smallest eigenvalues, if the condition index $\kappa = \frac{\lambda_1}{\lambda_p}$, with $\lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_p$ the eigenvalues.
|
||||
|
||||
|
||||
If all eigenvalues is different from 0, $\X^T \X$ can be inverted, but the estimated parameter variance would be large, thus the estimation of the parameters would be not relevant (not good enough).
|
||||
|
||||
\paragraph{Variance Inflation Factor}
|
||||
|
||||
Perform a regression of each of the predictors against the other predictors.
|
||||
|
||||
If there is a strong linear relationship between a parameter and the others, it would reflect that the coefficient of determination $R^2$ (the amount of variance explained by the model) for this model, which would mean that there is a strong relationship between the parameters.
|
||||
|
||||
We do this for all parameters, and for parameter $j = 1, \ldots, p$, the variance inflation factor would be:
|
||||
\[
|
||||
VIF_j = \frac{1}{1-R^2_j}.
|
||||
\]
|
||||
|
||||
\subparagraph*{Rule}
|
||||
If $VIF > 10$ or $VIF > 100$\dots
|
||||
|
||||
|
||||
In case of multicollinearity, we have to remove the variable one by one until there is no longer multicollinearity.
|
||||
Variables have to be removed based on statistical results and through discussion with experimenters.
|
||||
|
||||
|
||||
\subsection{Residuals analysis}
|
||||
|
||||
\paragraph*{Assumption}
|
||||
\[
|
||||
\varepsilon \sim \Norm_n(0_n, \sigma^2 I_n)
|
||||
\]
|
||||
|
||||
\paragraph{Normality of the residuals} If $\varepsilon_i$ ($i=1, \ldots, n$) could be observed we could build a QQ-plot of $\varepsilon_i / \sigma$ against quantiles of $\Norm(0, 1)$.
|
||||
|
||||
Only the residual errors $\hat{e}_i$ can be observed:
|
||||
|
||||
Let $e_i^*$ be the studentized residual, considered as estimators of $\varepsilon_i$
|
||||
|
||||
\[
|
||||
e_i^* = \frac{\hat{e}_i}{\sqrt{\sigma^2_{(i)(1-H_{ii})}}}
|
||||
\]
|
||||
|
||||
\begin{align*}
|
||||
\hat{Y} &= X \hat{\beta} \\
|
||||
&= X \left( (X^TX)^{-1} X^T Y\right) \\
|
||||
&= \underbrace{X (X^TX)^{-1} X^T}_{H} Y
|
||||
\end{align*}
|
||||
|
||||
\paragraph{Centered residuals} If $(1, \ldots, 1)^T$ belongs to $\X$ $\EE(\varepsilon) = 0$, by construction.
|
||||
|
||||
\paragraph{Independence} We do not have a statistical test for independence in R, we would plot the residuals $e$ against $\X \hat{\beta}$.
|
||||
|
||||
\paragraph{Homoscedastiscity} Plot the $\sqrt{e^*}$ against $\X \hat{\beta}$.
|
||||
|
||||
|
||||
\paragraph{Influential observations}
|
||||
|
||||
We make the distinction between observations:
|
||||
\begin{itemize}
|
||||
\item With too large residual
|
||||
$\rightarrow$ Influence on the estimation of $\sigma^2$
|
||||
\item Which are too isolated
|
||||
$\rightarrow$ Influence on the estimation of $\beta$
|
||||
\end{itemize}
|
||||
|
||||
\[
|
||||
e_i^* \sim \St(n-p-1)
|
||||
\]
|
||||
\subparagraph*{Rule} We consider an observation to be aberrant if:
|
||||
\[
|
||||
e_i^* > \F^{-1}_{\St(n-p-1)}(1-\alpha)
|
||||
\]
|
||||
quantile of order $1-\alpha$, $\alpha$ being often set as $1/n$, or we set the threshold to 2.
|
||||
|
||||
\paragraph{Leverage} Leverage is the diagonal term of the orthogonal projection matrix(?) $H_{ii}$.
|
||||
|
||||
\begin{property}
|
||||
\begin{itemize}
|
||||
\item $0 \leq H_{ii} \leq 1$
|
||||
\item $\sum_i H_ii = p$
|
||||
\end{itemize}
|
||||
\end{property}
|
||||
|
||||
\subparagraph*{Rule} We consider that the observation is aberrant if the leverage is ??.
|
||||
|
||||
|
||||
\paragraph{Non-linearity}
|
||||
|
||||
|
||||
\section{Model Selection}
|
||||
|
||||
We want to select the best model with the smallest number of predictors.
|
||||
|
||||
When models have too many explicative variables, the power of statistical tests decreases.
|
||||
|
||||
Different methods:
|
||||
\begin{itemize}
|
||||
\item Comparison of nested models;
|
||||
\item Information criteria;
|
||||
\item Method based on the prediction error.
|
||||
\end{itemize}
|
||||
|
||||
\subsection{Information criteria}
|
||||
|
||||
\subsubsection{Likelihood}
|
||||
|
||||
\begin{definition}[Likelihood]
|
||||
Probability to observe what we observed for a particular model.
|
||||
\[
|
||||
L_n (\M(k))
|
||||
\]
|
||||
\end{definition}
|
||||
|
||||
|
||||
\begin{definition}[Akaike Information Criterion]
|
||||
\[
|
||||
AIC(\M(k)) = -2 \log L_n (\M(k)) + 2k.
|
||||
\]
|
||||
|
||||
$2k$ is a penalty, leading to privilege the smallest model.
|
||||
\end{definition}
|
||||
|
||||
\begin{definition}[Bayesian Information Criterion]
|
||||
\[
|
||||
BIC(\M(k)) = -2 \log L_n (\M(k)) + \log(n) k.
|
||||
\]
|
||||
$\log(n) k$ is a penalty.
|
||||
\end{definition}
|
||||
|
||||
Usually $AIC$ have smaller penalty than $BIC$, thus $AIC$ criterion tends to select models with more variables than $BIC$ criterion.
|
||||
|
||||
\subsection{Stepwise}
|
||||
|
||||
\begin{description}
|
||||
\item[forward] Add new predictor iteratively, beginning with the most contributing predictors.
|
||||
\item[backward] Remove predictors iteratively.
|
||||
\item[stepwise] Combination of forward and backward selection. We start by no predictors. We add predictor. Before adding the predictor, we check whether all previously predictors remain meaningful.
|
||||
\end{description}
|
||||
|
||||
The problem with this iterative regression, is that at each step we make a test. We have to reduce the confidence level for multiple test.
|
||||
|
||||
In practice, the multiple testing problem is not taken into account in these approaches.
|
||||
|
||||
We can use information criteria or model comparison in these methods.
|
||||
|
||||
\section{Predictions}
|
||||
|
||||
Let $X_i$ the $i$-th row of the matrix $\X$. The observed value $Y_i$ can be estimated by:
|
||||
\[
|
||||
\hat{Y}_i = (\X \hat{\beta})_i = X_i \hat{\beta}
|
||||
\]
|
||||
|
||||
\begin{align*}
|
||||
\EE (\hat{Y}_i) &= (\X \beta)_i = X_i \beta \\
|
||||
\sigma^{-1} (\X \hat{\beta} - \X \beta) \sim \Norm (0_{p+1}, (\X^T \X)^{-1}), \qquad \text{and} \\
|
||||
\Var(\hat{Y}_i) = ... \\
|
||||
S^2 = \norm{...}
|
||||
\end{align*}
|
||||
|
||||
|
||||
\paragraph{Prediction Confidence Interval}
|
||||
We can build confidence interval for predicted values $(\X \hat{\beta})_i$
|
||||
|
||||
\dots
|
||||
|
||||
\paragraph{Prediction error of $Y$}
|
||||
|
||||
|
||||
\paragraph{Prediction interval for a new observation $Y_{n+1}$}
|
||||
|
||||
|
||||
|
|
@ -0,0 +1,186 @@
|
|||
\chapter{Generalized Linear Model}
|
||||
|
||||
\begin{example}
|
||||
|
||||
\begin{description}
|
||||
\item[Ex. 1 - Credit Carb Default]
|
||||
Let $Y_i$ be a boolean random variable following a Bernoulli distribution.
|
||||
\item[Ex. 2 - Horseshoe Crabs]
|
||||
Let $Y_i$, be the number of satellites males.
|
||||
|
||||
$Y_i$ can be described as following a Poisson distribution.
|
||||
\end{description}
|
||||
\end{example}
|
||||
|
||||
\begin{remark}
|
||||
A Poisson distribution can be viewed as an approximation of binomial distribution when $n$ is high and $p$ low.
|
||||
\end{remark}
|
||||
|
||||
|
||||
We will consider the following relation:
|
||||
\[
|
||||
\EE(Y_i) = g^{-1} X_i \beta,
|
||||
\]
|
||||
equivalently:
|
||||
\[
|
||||
g(\EE(Y_i)) = X_i \beta.
|
||||
\]
|
||||
|
||||
\begin{itemize}
|
||||
\item $\beta$ is estimated by the maximum likelihood;
|
||||
\item $g$ is called the link function.
|
||||
\end{itemize}
|
||||
|
||||
\begin{remark}
|
||||
In standard linear model, the OLS estimator is the estimator of maximum of likelihood.
|
||||
\end{remark}
|
||||
|
||||
\section{Logistic Regression}
|
||||
|
||||
\begin{align*}
|
||||
& \log(\frac{\Pi}{1 - \Pi}) & = \X \beta \\
|
||||
\Leftrightarrow & e^{\ln \frac{\Pi}{1 - \Pi}} = e^{\X \beta} \\
|
||||
\Leftrightarrow & \frac{\Pi}{1 - \Pi} = e^{\X \beta} \\
|
||||
\Leftrightarrow & \Pi = (1 - \Pi) e^{\X\beta} \\
|
||||
\Leftrightarrow & \Pi = e^{\X \beta} - \Pi e^{\X\beta} \\
|
||||
\Leftrightarrow & \Pi + \Pi e^{\X\beta} = e^{\X \beta} \\
|
||||
\Leftrightarrow & \Pi (1 - e^{\X\beta}) = e^{\X \beta} \\
|
||||
\Leftrightarrow & \Pi = \frac{e^{\X\beta}}{1 + e^{\X \beta}}
|
||||
\end{align*}
|
||||
|
||||
|
||||
\section{Maximum Likelihood estimator}
|
||||
|
||||
log-likelihood: the probability to observe what we observe.
|
||||
|
||||
Estimate $\beta$ by $\hat{\beta}$ such that $\forall \beta \in \RR[p+1]$:
|
||||
\[
|
||||
L_n (\hat{\beta}) \geq L_n (\beta)
|
||||
\]
|
||||
|
||||
These estimators are consistent, but not necessarily unbiased.
|
||||
|
||||
|
||||
\section{Test for each single coordinate}
|
||||
|
||||
|
||||
|
||||
\begin{example}[Payment Default]
|
||||
Let $Y_i$ be the default value for individual $i$.
|
||||
|
||||
\[
|
||||
\log (\frac{\Pi (X)}{1 - \Pi (X)}) = \beta_0 + \beta_1 \text{student} + \beta_2 \text{balance} + \beta_3 \text{income}
|
||||
\]
|
||||
|
||||
In this example, only $\beta_0$ and $\beta_2$ are significantly different from 0.
|
||||
\end{example}
|
||||
|
||||
\begin{remark}
|
||||
We do not add $\varepsilon_i$, because $\log(\frac{\Pi (X)}{1 - \Pi (X)})$ corresponds to the expectation.
|
||||
\end{remark}
|
||||
|
||||
\subsection{Comparison of nested models}
|
||||
|
||||
To test $H_0:\: \beta_0 = \ldots = \beta_p = 0$, we use the likelihood ratio test:
|
||||
\[
|
||||
T_n = -2 \log (\mathcal{L}^{\texttt{null}}) + 2 \log (\mathcal{L}(\hat{\beta})) \underset{H_0}{\overunderset{\mathcal{L}}{n \to \infty}{\longrightarrow}} \chi^2(p).
|
||||
\]
|
||||
|
||||
\begin{remark}[Family of Tests]
|
||||
\begin{itemize}
|
||||
\item Comparison of estimated values and values under the null hypothesis;
|
||||
\item Likelihood ratio test;
|
||||
\item Based on the slope on the derivative.
|
||||
\end{itemize}
|
||||
\end{remark}
|
||||
|
||||
\section{Relative risk}
|
||||
|
||||
$RR_i$ is the probably to have the disease, conditional to the predictor $X_{i1}$ over the probability of having the disease, conditional to the predictor $X_{i2}$.
|
||||
|
||||
\[
|
||||
RR(j) = \frac{\Prob(Y_{i_1} = 1 \: | \: X_{i_1})}{\Prob(Y_{i_2} = 1) \: | \: X_{i_2}} = \frac{\EE(Y_{i_1})}{\EE(Y_{i_2})}.
|
||||
\]
|
||||
|
||||
$\pi(X_i)$ is the probability of having the disease, according to $X_i$.
|
||||
|
||||
The relative risk can be written as\dots
|
||||
|
||||
\section{Odds}
|
||||
|
||||
Quantity providing a measure of the likelihood of a particular outcome:
|
||||
\[
|
||||
odd = \frac{\pi(X_i)}{1 - \pi(X_i)}
|
||||
\]
|
||||
|
||||
\[
|
||||
odds = \exp(X_i \beta)
|
||||
\]
|
||||
odds is the ratio of people having the disease, if Y represent the disease, over the people not having the disease.
|
||||
|
||||
\section{Odds Ratio}
|
||||
|
||||
\begin{align*}
|
||||
OR(j) =\frac{odds(X_{i_1})}{odds(X_{i_2})} & = \frac{\frac{\pi{X_{i_1}}}{1 - \pi(X_{i_1})}}{\frac{\pi{X_{i_2}}}{1 - \pi(X_{i_2})}}
|
||||
\end{align*}
|
||||
|
||||
The OR can be written as:
|
||||
\[
|
||||
OR(j) = \exp(\beta_j)
|
||||
\]
|
||||
|
||||
\begin{exercise}
|
||||
Show that $OR(j) = \exp(\beta_j)$.
|
||||
\end{exercise}
|
||||
|
||||
\begin{align*}
|
||||
OR(j) & = \frac{odds(X_{i_1})}{odds(X_{i_2})} \\
|
||||
& = \frac{\exp(X_{i_1} \beta)}{\exp(X_{i_2} \beta)} \\
|
||||
\end{align*}
|
||||
|
||||
\[
|
||||
\log \left(
|
||||
\frac{\Prob(Y=1 \: |\: X_{i_1})}{1 - \Prob(Y=1 \: |\: X_{i_1})}\right)
|
||||
= \beta_0 + \beta_1 X_1^{(1)} + \beta_2 X_2^{(1)} + \ldots + \beta_p X_p^{(1)}
|
||||
\]
|
||||
Similarly
|
||||
\[
|
||||
\log \left(
|
||||
\frac{\Prob(Y=1 \: |\: X_{i_2})}{1 - \Prob(Y=1 \: |\: X_{i_2})}\right)
|
||||
= \beta_0 + \beta_1 X_1^{(2)} + \beta_2 X_2^{(2)} + \ldots + \beta_p X_p^{(2)}
|
||||
\]
|
||||
We substract both equations:
|
||||
|
||||
\begin{align*}
|
||||
&\log \left(
|
||||
\frac{\Prob(Y=1 \: |\: X_{i_1})}{1 - \Prob(Y=1 \: |\: X_{i_1})} \right) - \log \left(\frac{\Prob(Y=1 \: |\: X_{i_2})}{1 - \Prob(Y=1 \: |\: X_{i_2})}\right) \\
|
||||
& = \beta_0 + \beta_1 X_1^{(1)} + \beta_2 X_2^{(1)} + \ldots + \beta_p X_p^{(1)} - \beta_0 + \beta_1 X_1^{(2)} + \beta_2 X_2^{(2)} + \ldots + \beta_p X_p^{(2)} \\
|
||||
& = \log OR(j) \\
|
||||
& = \cancel{(\beta_0 - \beta_0)} + \beta_1 \cancel{(X_1^{(1)} - X_1^{(2)})} + \beta_2 \cancel{(X_2^{(1)} - X_2^{(2)})} + \ldots + \beta_j \cancelto{1}{(X_j^{(1)} - X_j^{(2)})} + \ldots + \beta_p \cancel{(X_p^{(1)} - X_p^{(2)})} \\
|
||||
&\Leftrightarrow \log (OR_j) = \beta_j \\
|
||||
&\Leftrightarrow OR(j) = \exp(\beta_j)
|
||||
\end{align*}
|
||||
|
||||
OR is not equal to RR, except in the particular case of probability (?)
|
||||
|
||||
If OR is significantly different from 1, the $\exp(\beta_j)$ is significantly different from 1, thus $\beta_j$ is significantly different from 0.
|
||||
|
||||
If we have more than two classes, we do not know what means $X_{i_1} - X_{i_2} = 0$. We will have to take a reference class, and compare successively each class with the reference class.
|
||||
|
||||
$\hat{\pi}(X_{+}) = \hat{\Prob(X=1 \: | X_{i1})}$ for a new individual.
|
||||
|
||||
|
||||
\section{Poisson model}
|
||||
|
||||
Let $Y_{i} \sim \mathcal{P}(\lambda_{i})$, corresponding to a counting.
|
||||
|
||||
\begin{align*}
|
||||
\EE(Y_{i}) & = g^{-1}(X_{i} \beta) \\
|
||||
\Leftrightarrow g(\EE(Y_{i})) = X_{i} \beta
|
||||
\end{align*}
|
||||
|
||||
where $g(x) = \ln(x)$, and $g^{-1}(x) = e^{x}$.
|
||||
|
||||
\[
|
||||
\lambda_{i} = \EE(Y_{i}) = \Var(Y_{i})
|
||||
\]
|
|
@ -0,0 +1,26 @@
|
|||
\chapter{Tests Reminders}
|
||||
|
||||
\section{\texorpdfstring{$\chi^2$}{chi2} test of independence}
|
||||
|
||||
[...]
|
||||
|
||||
\section{\texorpdfstring{$\chi^2$}{chi2} test of goodness of fit}
|
||||
|
||||
Check if the observations is in adequation with a particular distribution.
|
||||
|
||||
\begin{example}[Mendel experiments]
|
||||
Let $AB$, $Ab$, $aB$, $ab$ be the four possible genotypes of peas: colors and grain shape.
|
||||
\begin{tabular}{cccc}
|
||||
\toprule
|
||||
AB & Ab & aB & ab \\
|
||||
\midrule
|
||||
315 & 108 & 101 & 32 \\
|
||||
\bottomrule
|
||||
\end{tabular}
|
||||
\end{example}
|
||||
|
||||
The test statistics is:
|
||||
\[
|
||||
D_{k,n} = \sum_{i=1}^{k} \frac{(N_i - np_i)^2}{np_i} \underset{H_0}{\overunderset{\mathcal{L}}{n \to \infty}{\longrightarrow}} \chi^2_{(n-1)(q-1)??}
|
||||
\]
|
||||
|
|
@ -0,0 +1,125 @@
|
|||
\chapter{Regularized regressions}
|
||||
|
||||
|
||||
Let $\Y$ be a vector of observations and $\X$ a matrix of dimension $n \times (p+1)$.
|
||||
Suppose the real model is:
|
||||
\[
|
||||
\Y = \X^{m^{*}} \beta^{m^{*}} + \varepsilon^{m^{*}} = \X^{*} \beta^{*} + \varepsilon^{*}.
|
||||
\]
|
||||
if $p$ is large compared to $n$:
|
||||
\begin{itemize}
|
||||
\item $\hat{\beta} = (\X^{T}\X)^{-1} \X^{T} \Y$ is not defined as $\X^{T}\X$ is not invertible.
|
||||
|
||||
$m^{*}$ is the number of true predictors, that is, the number of predictor with non-zero values.
|
||||
|
||||
\item
|
||||
|
||||
\item
|
||||
\end{itemize}
|
||||
|
||||
\section{Ridge regression}
|
||||
|
||||
Instead of minimizing the mean square error, we want to minimize the following regularize expression:
|
||||
\[
|
||||
\hat{\beta}^{\text{ridge}}_{\lambda} = \argmin_{\beta \in \RR[p]} \norm{Y - X \beta}^{2} \lambda \sum_{j=1}^{p} \beta_{j}^{2}
|
||||
\]
|
||||
it is a way to favor the solution with small values for parameters.
|
||||
where $\lambda$ is used to callibrate the regularization.
|
||||
\[
|
||||
\sum_{j=1}^{p} \beta_{j}^{2} = \norm{\beta_{j}}^{2}
|
||||
\]
|
||||
is the classical square norm of the vector.
|
||||
|
||||
|
||||
\section{Cross validation}
|
||||
|
||||
\subsection{Leave-one-out \textit{jackknife}}
|
||||
|
||||
\begin{example}
|
||||
Let $\M_{0}$ be the model $Y_{i} = \beta_{0} + \beta_{1} X_{1i} + \beta_{2}X_{2i} + \beta_{3} X_{3i}$
|
||||
|
||||
The model will be:
|
||||
\[
|
||||
\begin{pmatrix}
|
||||
y_{1} \\
|
||||
y_{2} \\
|
||||
y_{3} \\
|
||||
y_{4} \\
|
||||
y_{5}
|
||||
\end{pmatrix} =
|
||||
\beta_{0} + \beta_{1} \begin{pmatrix}
|
||||
x_{11} \\
|
||||
x_{12} \\
|
||||
x_{13} \\
|
||||
x_{14} \\
|
||||
x_{15}
|
||||
\end{pmatrix}
|
||||
+ \beta_{2} \begin{pmatrix}
|
||||
x_{21} \\
|
||||
x_{22} \\
|
||||
x_{23} \\
|
||||
x_{24} \\
|
||||
x_{25}
|
||||
\end{pmatrix}
|
||||
+
|
||||
\beta_{3} \begin{pmatrix}
|
||||
x_{31} \\
|
||||
x_{32} \\
|
||||
x_{33} \\
|
||||
x_{34} \\
|
||||
x_{35}
|
||||
\end{pmatrix}
|
||||
\]
|
||||
\def\x{$\times$}
|
||||
\begin{tabular}{ccccc}
|
||||
\toprule
|
||||
1 & 2 & 3 & 4 & 5 \\
|
||||
\midrule
|
||||
. & \x & \x & \x & \x \\
|
||||
\x & . & \x & \x & \x \\
|
||||
\x & \x & . & \x & \x \\
|
||||
\x & \x & \x & . & \x \\
|
||||
\x & \x & \x & \x & . \\
|
||||
\bottomrule
|
||||
\end{tabular}
|
||||
\end{example}
|
||||
|
||||
We perform computation of $\lambda$ for each dataset without one observation.
|
||||
|
||||
|
||||
\subsection{K-fold cross-validation}
|
||||
|
||||
We will have as many tables as subsets.
|
||||
|
||||
|
||||
We chose lambda such that the generalization error is the smallest.
|
||||
|
||||
\section{Lasso regression}
|
||||
|
||||
The difference with the Ridge regression lies in the penalty:
|
||||
|
||||
\[
|
||||
\hat{\beta}_{\lambda}^{\text{lasso}}= \argmin \norm{Y-X\beta}^{2} + \sum_{j=1}^{p} \abs{\beta_{j}}
|
||||
\]
|
||||
|
||||
$\sum_{j=1}^{p} \abs{\beta_j} = \norm{\beta}_1$
|
||||
|
||||
Instead of having a smooth increasing for each parameters, each parameters will enter iteratively in the model. Some parameters can be set to 0.
|
||||
|
||||
Lasso regression can be used to perform variable selection.
|
||||
|
||||
|
||||
We can use the same methods (K-fold and Leave-one-out) to select the $\lambda$ value.
|
||||
|
||||
\section{Elastic Net}
|
||||
|
||||
Combination of the Ridge and Lasso regression:
|
||||
|
||||
\[
|
||||
\hat{\beta}_\lambda^{en} = \argmin \norm{Y-X\beta}^{2} + \lambda_{1} \norm{\beta}_{1} + \lambda_{2} \norm{\beta}_{2}^{2}
|
||||
\]
|
||||
|
||||
|
||||
\begin{remark}
|
||||
In the case of Lasso, Elastic net or Ridge regression, we can no longer perform statistical test on the parameters.
|
||||
\end{remark}
|
|
@ -0,0 +1,2 @@
|
|||
\part{Linear Algebra}
|
||||
|
|
@ -0,0 +1,220 @@
|
|||
\chapter{Elements of Linear Algebra}
|
||||
\label{ch:elements-of-linear-algebra}
|
||||
|
||||
\begin{remark}[vector]
|
||||
Let $u$ a vector, we will use interchangeably the following notations: $u$ and $\vec{u}$
|
||||
\end{remark}
|
||||
|
||||
Let $u = \begin{pmatrix}
|
||||
u_1 \\
|
||||
\vdots \\
|
||||
u_n
|
||||
\end{pmatrix}$ and $v = \begin{pmatrix}
|
||||
v_1 \\
|
||||
\vdots \\
|
||||
v_n
|
||||
\end{pmatrix}$
|
||||
|
||||
\begin{definition}[Scalar Product (Dot Product)]
|
||||
\begin{align*}
|
||||
\scalar{u, v} & = \begin{pmatrix}
|
||||
u_1, \ldots, u_v
|
||||
\end{pmatrix}
|
||||
\begin{pmatrix}
|
||||
v_1 \\
|
||||
\vdots \\
|
||||
v_n
|
||||
\end{pmatrix} \\
|
||||
& = u_1 v_1 + u_2 v_2 + \ldots + u_n v_n
|
||||
\end{align*}
|
||||
|
||||
We may use $\scalar{u, v}$ or $u \cdot v$ notations.
|
||||
\end{definition}
|
||||
\paragraph{Dot product properties}
|
||||
\begin{description}
|
||||
\item[Commutative] $\scalar{u, v} = \scalar{v, u}$
|
||||
\item[Distributive] $\scalar{(u+v), w} = \scalar{u, w} + \scalar{v, w}$
|
||||
\item $\scalar{u, v} = \norm{u} \times \norm{v} \times \cos(\widehat{u, v})$
|
||||
\item $\scalar{a, a} = \norm{a}^2$
|
||||
\end{description}
|
||||
|
||||
\begin{definition}[Norm]
|
||||
Length of the vector.
|
||||
\[
|
||||
\norm{u} = \sqrt{\scalar{u, v}}
|
||||
\]
|
||||
|
||||
$\norm{u, v} > 0$
|
||||
\end{definition}
|
||||
|
||||
\begin{definition}[Distance]
|
||||
\[
|
||||
dist(u, v) = \norm{u-v}
|
||||
\]
|
||||
\end{definition}
|
||||
|
||||
\begin{definition}[Orthogonality]
|
||||
|
||||
\end{definition}
|
||||
|
||||
\begin{remark}
|
||||
\[
|
||||
(dist(u, v))^2 = \norm{u - v}^2,
|
||||
\] and
|
||||
\[
|
||||
\scalar{v-u, v-u}
|
||||
\]
|
||||
\end{remark}
|
||||
|
||||
\begin{figure}
|
||||
\centering
|
||||
\includegraphics{figures/schemes/vector_orthogonality.pdf}
|
||||
\caption{Scalar product of two orthogonal vectors.}
|
||||
\label{fig:scheme-orthogonal-scalar-product}
|
||||
\end{figure}
|
||||
|
||||
\begin{align*}
|
||||
\scalar{v-u, v-u} & = \scalar{v, v} + \scalar{u, u} - 2 \scalar{u, v} \\
|
||||
& = \norm{v}^2 + \norm{u}^2 \\
|
||||
& = -2 \scalar{u, v}
|
||||
\end{align*}
|
||||
|
||||
\begin{align*}
|
||||
\norm{u - v}^2 & = \norm{u}^2 + \norm{v}^2 - 2 \scalar{u,v} \\
|
||||
\norm{u + v}^2 & = \norm{u}^2 + \norm{v}^2 + 2 \scalar{u,v}
|
||||
\end{align*}
|
||||
|
||||
\begin{proposition}[Scalar product of orthogonal vectors]
|
||||
\[
|
||||
u \perp v \Leftrightarrow \scalar{u, v} = 0
|
||||
\]
|
||||
\end{proposition}
|
||||
|
||||
\begin{proof}[Indeed]
|
||||
$\norm{u-v}^2 = \norm{u+v}^2$, as illustrated in \autoref{fig:scheme-orthogonal-scalar-product}.
|
||||
\begin{align*}
|
||||
\Leftrightarrow & -2 \scalar{u, v} = 2 \scalar{u, v} \\
|
||||
\Leftrightarrow & 4 \scalar{u, v} = 0 \\
|
||||
\Leftrightarrow & \scalar{u, v} = 0
|
||||
\end{align*}
|
||||
\end{proof}
|
||||
|
||||
\begin{theorem}[Pythagorean theorem]
|
||||
If $u \perp v$, then $\norm{u+v}^2 = \norm{u}^2 + \norm{v}^2$ .
|
||||
\end{theorem}
|
||||
|
||||
\begin{definition}[Orthogonal Projection]
|
||||
|
||||
\end{definition}
|
||||
Let $y = \begin{pmatrix}
|
||||
y_1 \\
|
||||
. \\
|
||||
y_n
|
||||
\end{pmatrix} \in \RR[n]$ and $w$ a subspace of $\RR[n]$.
|
||||
$\mathcal{Y}$ can be written as the orthogonal projection of $y$ on $w$:
|
||||
\[
|
||||
\mathcal{Y} = proj^w(y) + z,
|
||||
\]
|
||||
where
|
||||
\[
|
||||
\begin{cases}
|
||||
z \in w^\perp \\
|
||||
proj^w(y) \in w
|
||||
\end{cases}
|
||||
\]
|
||||
There is only one vector $\mathcal{Y}$ that ?
|
||||
|
||||
The scalar product between $z$ and (?) is zero.
|
||||
|
||||
\begin{property}
|
||||
$proj^w(y)$ is the closest vector to $y$ that belongs to $w$.
|
||||
\end{property}
|
||||
|
||||
\begin{definition}[Matrix]
|
||||
A matrix is an application, that is, a function that transform a thing into another, it is a linear function.
|
||||
\end{definition}
|
||||
|
||||
\begin{example}[Matrix application]
|
||||
|
||||
Let $A$ be a matrix:
|
||||
\[
|
||||
A = \begin{pmatrix}
|
||||
a & b \\
|
||||
c & d
|
||||
\end{pmatrix}
|
||||
\] and
|
||||
\[
|
||||
x = \begin{pmatrix}
|
||||
x_1 \\
|
||||
x_2
|
||||
\end{pmatrix}
|
||||
\]
|
||||
Then,
|
||||
\begin{align*}
|
||||
Ax & = \begin{pmatrix}
|
||||
a & b \\
|
||||
c & d
|
||||
\end{pmatrix}
|
||||
\begin{pmatrix}
|
||||
x_1 \\
|
||||
x_2
|
||||
\end{pmatrix} \\
|
||||
& = \begin{pmatrix}
|
||||
a x_1 + b x_2 \\
|
||||
c x_1 + d x_2
|
||||
\end{pmatrix}
|
||||
\end{align*}
|
||||
|
||||
Similarly,
|
||||
\begin{align*}
|
||||
\begin{pmatrix}
|
||||
a & b & c & d \\
|
||||
e & f & g & h \\
|
||||
i & j & k & l
|
||||
\end{pmatrix}
|
||||
\begin{pmatrix}
|
||||
x_1 \\
|
||||
x_2 \\
|
||||
x_3 \\
|
||||
x_4
|
||||
\end{pmatrix}
|
||||
=
|
||||
\begin{pmatrix}
|
||||
\luadirect{
|
||||
local matrix_product = require("scripts.matrix_product")
|
||||
local m1 = {
|
||||
{"a", "b", "c", "d"},
|
||||
{"e", "f", "g", "h"},
|
||||
{"i", "j", "k", "l"}
|
||||
}
|
||||
local m2 = {
|
||||
{"x_1"},
|
||||
{"x_2"},
|
||||
{"x_3"},
|
||||
{"x_4"}
|
||||
}
|
||||
local product_matrix = matrix_product.matrix_product_repr(m1,m2)
|
||||
local matrix_dump = matrix_product.dump_matrix(product_matrix)
|
||||
tex.print(matrix_dump)
|
||||
}
|
||||
\end{pmatrix}
|
||||
\end{align*}
|
||||
\end{example}
|
||||
|
||||
The number of columns has to be the same as the dimension of the vector to which the matrix is applied.
|
||||
|
||||
\begin{definition}[Tranpose of a Matrix]
|
||||
Let $A = \begin{pmatrix}
|
||||
a & b \\
|
||||
c & d
|
||||
\end{pmatrix}$, then $A^T = \begin{pmatrix}
|
||||
a & c \\
|
||||
b & d
|
||||
\end{pmatrix}$
|
||||
\end{definition}
|
||||
|
||||
\begin{figure}
|
||||
\centering
|
||||
\includegraphics{figures/schemes/coordinates_systems.pdf}
|
||||
\caption{Coordinate systems}
|
||||
\end{figure}
|
|
@ -0,0 +1,35 @@
|
|||
\chapter{Introduction}
|
||||
|
||||
\begin{definition}[Long Term Nonprocessor (LTNP)]
|
||||
Patient who will remain a long time in good health condition, even with a large viral load (cf. HIV).
|
||||
\end{definition}
|
||||
|
||||
\begin{example}[Genotype: Qualitative or Quantitative?]
|
||||
\[
|
||||
\text{SNP}:
|
||||
\begin{cases}
|
||||
\text{AA} \\
|
||||
\text{AB} \\
|
||||
\text{BB}
|
||||
\end{cases}
|
||||
\rightarrow
|
||||
\begin{pmatrix}
|
||||
0 \\
|
||||
1 \\
|
||||
2
|
||||
\end{pmatrix},
|
||||
\]
|
||||
thus we might consider genotype either as a qualitative variable or quantitative variable.
|
||||
\end{example}
|
||||
|
||||
When the variable are quantitative, we use regression, whereas for qualitative variables, we use an analysis of variance.
|
||||
|
||||
\begin{figure}
|
||||
\begin{subfigure}{0.45\columnwidth}
|
||||
\includegraphics[width=\columnwidth]{figures/plots/linear_regression_linear.pdf}
|
||||
\end{subfigure}
|
||||
\begin{subfigure}{0.45\columnwidth}
|
||||
\includegraphics[width=\columnwidth]{figures/plots/linear_regression_non_linear.pdf}
|
||||
\end{subfigure}
|
||||
\caption{Illustration of two models fitting observed values}
|
||||
\end{figure}
|
|
@ -0,0 +1,12 @@
|
|||
\DeclareMathOperator{\VVar}{\mathbb{V}} % variance
|
||||
\DeclareMathOperator{\One}{\mathbf{1}}
|
||||
\DeclareMathOperator{\Cor}{\mathrm{Cor}}
|
||||
\DeclareMathOperator{\St}{\mathscr{St}}
|
||||
\newcommand{\M}[1][]{\ensuremath{\ifstrempty{#1}{\mathcal{M}}{\mathbb{M}_{#1}}}}
|
||||
\newcommand{\X}{\ensuremath{\mathbf{X}}}
|
||||
\newcommand{\Y}{\ensuremath{\mathbf{Y}}}
|
||||
\newcommand{\Z}{\ensuremath{\mathbf{Z}}}
|
||||
\DeclareMathOperator*{\argmax}{arg\,max}
|
||||
\DeclareMathOperator*{\argmin}{arg\,min}
|
||||
\usepackage{unicode-math}
|
||||
|
|
@ -0,0 +1,26 @@
|
|||
# Plot an affine model
|
||||
n <- 250
|
||||
sd <- 0.05
|
||||
epsilon <- rnorm(n, mean = 0, sd = 2)
|
||||
beta0 <- 1.25
|
||||
beta1 <- 4
|
||||
linear_model <- function(x) {
|
||||
return(beta0 + beta1*x)
|
||||
}
|
||||
x <- runif(n, min=0, max=1)
|
||||
y <- linear_model(x) + epsilon
|
||||
|
||||
pdf("figures/plots/linear_regression_linear.pdf")
|
||||
plot(x, y, col="#5654fa", type="p", pch=20, xlab="x", ylab="y")
|
||||
abline(a = beta0, b = beta1, col="red")
|
||||
dev.off()
|
||||
|
||||
|
||||
non_linear_model <- function(x) {
|
||||
return(beta0 + beta1 * exp(2*x))
|
||||
}
|
||||
non_linear_y <- non_linear_model(x) + epsilon
|
||||
pdf("figures/plots/linear_regression_non_linear.pdf")
|
||||
plot(x, non_linear_y, col="#5654fa", type="p", pch=20, xlab="x", ylab="z")
|
||||
curve(non_linear_model, from=0, to=1, add=T, col="red")
|
||||
dev.off()
|
Binary file not shown.
Binary file not shown.
Binary file not shown.
|
@ -0,0 +1,23 @@
|
|||
\documentclass[margin=0.5cm]{standalone}
|
||||
\usepackage{tikz}
|
||||
\usepackage{pgfplots}
|
||||
\pgfplotsset{compat=1.18}
|
||||
|
||||
\begin{document}
|
||||
\begin{tikzpicture}
|
||||
\begin{axis}[
|
||||
title={Logit function},
|
||||
xlabel={$x$},
|
||||
ylabel={$y$},
|
||||
domain=-5:5,
|
||||
samples=200,
|
||||
legend style={at={(0.95,0.05)},anchor=south east}
|
||||
]
|
||||
\newcommand{\Lvar}{1}
|
||||
\newcommand{\kvar}{1}
|
||||
\newcommand{\xvar}{0}
|
||||
\addplot [blue] {\Lvar / (1 + exp(-\kvar*(x-\xvar)))};
|
||||
\addlegendentry{$L = \Lvar, k=\kvar, x_0=\xvar$};
|
||||
\end{axis}
|
||||
\end{tikzpicture}
|
||||
\end{document}
|
|
@ -0,0 +1,3 @@
|
|||
covariance.pdf filter=lfs diff=lfs merge=lfs -text
|
||||
../plots/linear_regression_linear.pdf filter=lfs diff=lfs merge=lfs -text
|
||||
../plots/linear_regression_non_linear.pdf filter=lfs diff=lfs merge=lfs -text
|
Binary file not shown.
|
@ -0,0 +1,16 @@
|
|||
\documentclass[margin=0.5cm]{standalone}
|
||||
\usepackage{tikz}
|
||||
\usepackage{tkz-euclide}
|
||||
|
||||
\begin{document}
|
||||
\usetikzlibrary{3d}
|
||||
\begin{tikzpicture}
|
||||
\tkzDefPoint(-2,-2){A}
|
||||
\tkzDefPoint(10:3){B}
|
||||
\tkzDefShiftPointCoord[B](1:5){C}
|
||||
\tkzDefShiftPointCoord[A](1:5){D}
|
||||
\tkzDrawPolygon(A,...,D)
|
||||
\tkzDrawPoints(A,...,D)
|
||||
\node at (A) {A};
|
||||
\end{tikzpicture}
|
||||
\end{document}
|
Binary file not shown.
|
@ -0,0 +1,23 @@
|
|||
\documentclass[tikz]{standalone}
|
||||
\usepackage{tikz}
|
||||
|
||||
\begin{document}
|
||||
\usetikzlibrary{3d}
|
||||
% 1D axis
|
||||
\begin{tikzpicture}[->]
|
||||
\begin{scope}[xshift=0]
|
||||
\draw (0, 0, 0) -- (xyz cylindrical cs:radius=1) node[right] {$x$};
|
||||
\end{scope}
|
||||
% 2D coordinate system
|
||||
\begin{scope}[xshift=50]
|
||||
\draw (0, 0, 0) -- (xyz cylindrical cs:radius=1) node[right] {$x$};
|
||||
\draw (0, 0, 0) -- (xyz cylindrical cs:radius=1,angle=90) node[above] {$y$};
|
||||
\end{scope}
|
||||
% 3D coordinate systems
|
||||
\begin{scope}[xshift=100]
|
||||
\draw (0, 0, 0) -- (xyz cylindrical cs:radius=1) node[right] {$x$};
|
||||
\draw (0, 0, 0) -- (xyz cylindrical cs:radius=1,angle=90) node[above] {$y$};
|
||||
\draw (0, 0, 0) -- (xyz cylindrical cs:z=1) node[below left] {$z$};
|
||||
\end{scope}
|
||||
\end{tikzpicture}
|
||||
\end{document}
|
Binary file not shown.
|
@ -0,0 +1,35 @@
|
|||
% Scheme of Covariance
|
||||
\documentclass[margin=0.5cm]{standalone}
|
||||
\usepackage{tikz}
|
||||
\usepackage{amssymb}
|
||||
\begin{document}
|
||||
\begin{tikzpicture}
|
||||
\usetikzlibrary{positioning}
|
||||
\tikzset{
|
||||
point/.style = {circle, inner sep={.75\pgflinewidth}, opacity=1, draw, black, fill=black},
|
||||
point name/.style = {insert path={coordinate (#1)}},
|
||||
}
|
||||
\begin{scope}[yshift=0]
|
||||
\draw (-4, 0.5) -- (4,0.5) node[right] {$Y_i$};
|
||||
\draw (-4, -0.5) -- (4,-0.5) node[right] {$Y_j$};
|
||||
\node at (6, 0) {$\mathrm{Cov}(Y_i, Y_j) > 0$};
|
||||
\node (EYipoint) at (0,0.5) {$\times$};
|
||||
\node at (0, 1) {$\mathbb{E}(Y_i)$};
|
||||
\node (EYipoint) at (0,-0.5) {$\times$};
|
||||
\node at (0, -1) {$\mathbb{E}(Y_j)$};
|
||||
|
||||
\foreach \x in {-3, 0.5, 2.75} {
|
||||
\node[point] at (\x, 0.5) {};
|
||||
}
|
||||
\foreach \x in {-2, -1, 3} {
|
||||
\node[point] at (\x, -0.5) {};
|
||||
}
|
||||
\end{scope}
|
||||
\begin{scope}[yshift=-100]
|
||||
\draw (-4,0.5) -- (4,0.5) node[right] {$Y_i$};
|
||||
\draw (-4,-0.5) -- (4,-0.5) node[right] {$Y_j$};
|
||||
\node at (6, 0) {$\mathrm{Cov}(Y_i, Y_j) \approx 0$};
|
||||
\end{scope}
|
||||
|
||||
\end{tikzpicture}
|
||||
\end{document}
|
Binary file not shown.
Binary file not shown.
After Width: | Height: | Size: 8.5 KiB |
|
@ -0,0 +1,988 @@
|
|||
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
|
||||
<svg
|
||||
width="175.798"
|
||||
height="170.477"
|
||||
viewBox="0 0 175.798 170.477"
|
||||
version="1.1"
|
||||
id="svg88"
|
||||
sodipodi:docname="ordinary_least_squares.svg"
|
||||
inkscape:export-filename="ordinary_least_squares.png"
|
||||
inkscape:export-xdpi="300"
|
||||
inkscape:export-ydpi="300"
|
||||
inkscape:version="1.3 (0e150ed6c4, 2023-07-21)"
|
||||
xmlns:inkscape="http://www.inkscape.org/namespaces/inkscape"
|
||||
xmlns:sodipodi="http://sodipodi.sourceforge.net/DTD/sodipodi-0.dtd"
|
||||
xmlns:xlink="http://www.w3.org/1999/xlink"
|
||||
xmlns="http://www.w3.org/2000/svg"
|
||||
xmlns:svg="http://www.w3.org/2000/svg">
|
||||
<sodipodi:namedview
|
||||
id="namedview88"
|
||||
pagecolor="#ffffff"
|
||||
bordercolor="#000000"
|
||||
borderopacity="0.25"
|
||||
inkscape:showpageshadow="2"
|
||||
inkscape:pageopacity="0.0"
|
||||
inkscape:pagecheckerboard="0"
|
||||
inkscape:deskcolor="#d1d1d1"
|
||||
inkscape:export-bgcolor="#ffffffff"
|
||||
inkscape:zoom="3.7372438"
|
||||
inkscape:cx="87.899002"
|
||||
inkscape:cy="85.223233"
|
||||
inkscape:window-width="1920"
|
||||
inkscape:window-height="1011"
|
||||
inkscape:window-x="0"
|
||||
inkscape:window-y="32"
|
||||
inkscape:window-maximized="1"
|
||||
inkscape:current-layer="svg88" />
|
||||
<defs
|
||||
id="defs1">
|
||||
<g
|
||||
id="g1">
|
||||
<g
|
||||
id="glyph-0-0" />
|
||||
<g
|
||||
id="glyph-0-1">
|
||||
<path
|
||||
d="M 1.90625 -0.53125 C 1.90625 -0.8125 1.671875 -1.0625 1.390625 -1.0625 C 1.09375 -1.0625 0.859375 -0.8125 0.859375 -0.53125 C 0.859375 -0.234375 1.09375 0 1.390625 0 C 1.671875 0 1.90625 -0.234375 1.90625 -0.53125 Z M 1.90625 -0.53125 "
|
||||
id="path1" />
|
||||
</g>
|
||||
</g>
|
||||
</defs>
|
||||
<path
|
||||
fill="none"
|
||||
stroke-width="0.3985"
|
||||
stroke-linecap="butt"
|
||||
stroke-linejoin="miter"
|
||||
stroke="rgb(0%, 0%, 0%)"
|
||||
stroke-opacity="1"
|
||||
stroke-miterlimit="10"
|
||||
d="M 0.00165625 -0.00046875 L 141.275094 -0.00046875 "
|
||||
transform="matrix(1, 0, 0, -1, 15.346, 156.105)"
|
||||
id="path2" />
|
||||
<path
|
||||
fill="none"
|
||||
stroke-width="0.31879"
|
||||
stroke-linecap="round"
|
||||
stroke-linejoin="round"
|
||||
stroke="rgb(0%, 0%, 0%)"
|
||||
stroke-opacity="1"
|
||||
stroke-miterlimit="10"
|
||||
d="M -1.195979 1.593281 C -1.094416 0.995625 -0.00066625 0.101094 0.300115 -0.00046875 C -0.00066625 -0.098125 -1.094416 -0.996563 -1.195979 -1.594219 "
|
||||
transform="matrix(1, 0, 0, -1, 156.62176, 156.105)"
|
||||
id="path3" />
|
||||
<path
|
||||
fill="none"
|
||||
stroke-width="0.3985"
|
||||
stroke-linecap="butt"
|
||||
stroke-linejoin="miter"
|
||||
stroke="rgb(0%, 0%, 0%)"
|
||||
stroke-opacity="1"
|
||||
stroke-miterlimit="10"
|
||||
d="M 0.00165625 -0.00046875 L 0.00165625 141.276875 "
|
||||
transform="matrix(1, 0, 0, -1, 15.346, 156.105)"
|
||||
id="path4" />
|
||||
<path
|
||||
fill="none"
|
||||
stroke-width="0.31879"
|
||||
stroke-linecap="round"
|
||||
stroke-linejoin="round"
|
||||
stroke="rgb(0%, 0%, 0%)"
|
||||
stroke-opacity="1"
|
||||
stroke-miterlimit="10"
|
||||
d="M -1.194197 1.592094 C -1.096541 0.994438 0.001115 0.0999063 0.29799 -0.00165625 C 0.001115 -0.0993125 -1.096541 -0.99775 -1.194197 -1.595406 "
|
||||
transform="matrix(0, -1, -1, 0, 15.346, 14.82924)"
|
||||
id="path5" />
|
||||
<path
|
||||
fill="none"
|
||||
stroke-width="0.19925"
|
||||
stroke-linecap="butt"
|
||||
stroke-linejoin="miter"
|
||||
stroke="rgb(75%, 75%, 75%)"
|
||||
stroke-opacity="1"
|
||||
stroke-miterlimit="10"
|
||||
d="M 46.767281 66.046406 L 46.767281 76.855 "
|
||||
transform="matrix(1, 0, 0, -1, 15.346, 156.105)"
|
||||
id="path6" />
|
||||
<path
|
||||
fill="none"
|
||||
stroke-width="0.19925"
|
||||
stroke-linecap="butt"
|
||||
stroke-linejoin="miter"
|
||||
stroke="rgb(75%, 75%, 75%)"
|
||||
stroke-opacity="1"
|
||||
stroke-miterlimit="10"
|
||||
d="M 59.880562 68.671406 L 59.880562 52.015156 "
|
||||
transform="matrix(1, 0, 0, -1, 15.346, 156.105)"
|
||||
id="path7" />
|
||||
<path
|
||||
fill="none"
|
||||
stroke-width="0.19925"
|
||||
stroke-linecap="butt"
|
||||
stroke-linejoin="miter"
|
||||
stroke="rgb(75%, 75%, 75%)"
|
||||
stroke-opacity="1"
|
||||
stroke-miterlimit="10"
|
||||
d="M 35.450875 63.784687 L 35.450875 71.526875 "
|
||||
transform="matrix(1, 0, 0, -1, 15.346, 156.105)"
|
||||
id="path8" />
|
||||
<path
|
||||
fill="none"
|
||||
stroke-width="0.19925"
|
||||
stroke-linecap="butt"
|
||||
stroke-linejoin="miter"
|
||||
stroke="rgb(75%, 75%, 75%)"
|
||||
stroke-opacity="1"
|
||||
stroke-miterlimit="10"
|
||||
d="M 122.404 81.175312 L 122.404 69.929219 "
|
||||
transform="matrix(1, 0, 0, -1, 15.346, 156.105)"
|
||||
id="path9" />
|
||||
<path
|
||||
fill="none"
|
||||
stroke-width="0.19925"
|
||||
stroke-linecap="butt"
|
||||
stroke-linejoin="miter"
|
||||
stroke="rgb(75%, 75%, 75%)"
|
||||
stroke-opacity="1"
|
||||
stroke-miterlimit="10"
|
||||
d="M 3.532906 57.401875 L 3.532906 49.745625 "
|
||||
transform="matrix(1, 0, 0, -1, 15.346, 156.105)"
|
||||
id="path10" />
|
||||
<path
|
||||
fill="none"
|
||||
stroke-width="0.19925"
|
||||
stroke-linecap="butt"
|
||||
stroke-linejoin="miter"
|
||||
stroke="rgb(75%, 75%, 75%)"
|
||||
stroke-opacity="1"
|
||||
stroke-miterlimit="10"
|
||||
d="M 108.482125 78.390156 L 108.482125 68.062031 "
|
||||
transform="matrix(1, 0, 0, -1, 15.346, 156.105)"
|
||||
id="path11" />
|
||||
<path
|
||||
fill="none"
|
||||
stroke-width="0.19925"
|
||||
stroke-linecap="butt"
|
||||
stroke-linejoin="miter"
|
||||
stroke="rgb(75%, 75%, 75%)"
|
||||
stroke-opacity="1"
|
||||
stroke-miterlimit="10"
|
||||
d="M 19.236031 60.5425 L 19.236031 38.245625 "
|
||||
transform="matrix(1, 0, 0, -1, 15.346, 156.105)"
|
||||
id="path12" />
|
||||
<path
|
||||
fill="none"
|
||||
stroke-width="0.19925"
|
||||
stroke-linecap="butt"
|
||||
stroke-linejoin="miter"
|
||||
stroke="rgb(75%, 75%, 75%)"
|
||||
stroke-opacity="1"
|
||||
stroke-miterlimit="10"
|
||||
d="M 107.814156 78.257344 L 107.814156 54.538594 "
|
||||
transform="matrix(1, 0, 0, -1, 15.346, 156.105)"
|
||||
id="path13" />
|
||||
<path
|
||||
fill="none"
|
||||
stroke-width="0.19925"
|
||||
stroke-linecap="butt"
|
||||
stroke-linejoin="miter"
|
||||
stroke="rgb(75%, 75%, 75%)"
|
||||
stroke-opacity="1"
|
||||
stroke-miterlimit="10"
|
||||
d="M 78.087594 72.312031 L 78.087594 75.976094 "
|
||||
transform="matrix(1, 0, 0, -1, 15.346, 156.105)"
|
||||
id="path14" />
|
||||
<path
|
||||
fill="none"
|
||||
stroke-width="0.19925"
|
||||
stroke-linecap="butt"
|
||||
stroke-linejoin="miter"
|
||||
stroke="rgb(75%, 75%, 75%)"
|
||||
stroke-opacity="1"
|
||||
stroke-miterlimit="10"
|
||||
d="M 105.345406 77.76125 L 105.345406 105.07375 "
|
||||
transform="matrix(1, 0, 0, -1, 15.346, 156.105)"
|
||||
id="path15" />
|
||||
<path
|
||||
fill="none"
|
||||
stroke-width="0.19925"
|
||||
stroke-linecap="butt"
|
||||
stroke-linejoin="miter"
|
||||
stroke="rgb(75%, 75%, 75%)"
|
||||
stroke-opacity="1"
|
||||
stroke-miterlimit="10"
|
||||
d="M 31.017281 62.897969 L 31.017281 60.312031 "
|
||||
transform="matrix(1, 0, 0, -1, 15.346, 156.105)"
|
||||
id="path16" />
|
||||
<path
|
||||
fill="none"
|
||||
stroke-width="0.19925"
|
||||
stroke-linecap="butt"
|
||||
stroke-linejoin="miter"
|
||||
stroke="rgb(75%, 75%, 75%)"
|
||||
stroke-opacity="1"
|
||||
stroke-miterlimit="10"
|
||||
d="M 73.509469 71.394062 L 73.509469 75.581562 "
|
||||
transform="matrix(1, 0, 0, -1, 15.346, 156.105)"
|
||||
id="path17" />
|
||||
<path
|
||||
fill="none"
|
||||
stroke-width="0.19925"
|
||||
stroke-linecap="butt"
|
||||
stroke-linejoin="miter"
|
||||
stroke="rgb(75%, 75%, 75%)"
|
||||
stroke-opacity="1"
|
||||
stroke-miterlimit="10"
|
||||
d="M 78.696969 72.433125 L 78.696969 85.390156 "
|
||||
transform="matrix(1, 0, 0, -1, 15.346, 156.105)"
|
||||
id="path18" />
|
||||
<path
|
||||
fill="none"
|
||||
stroke-width="0.19925"
|
||||
stroke-linecap="butt"
|
||||
stroke-linejoin="miter"
|
||||
stroke="rgb(75%, 75%, 75%)"
|
||||
stroke-opacity="1"
|
||||
stroke-miterlimit="10"
|
||||
d="M 89.134469 74.519062 L 89.134469 91.308125 "
|
||||
transform="matrix(1, 0, 0, -1, 15.346, 156.105)"
|
||||
id="path19" />
|
||||
<path
|
||||
fill="none"
|
||||
stroke-width="0.19925"
|
||||
stroke-linecap="butt"
|
||||
stroke-linejoin="miter"
|
||||
stroke="rgb(75%, 75%, 75%)"
|
||||
stroke-opacity="1"
|
||||
stroke-miterlimit="10"
|
||||
d="M 82.732125 73.241719 L 82.732125 60.472187 "
|
||||
transform="matrix(1, 0, 0, -1, 15.346, 156.105)"
|
||||
id="path20" />
|
||||
<path
|
||||
fill="none"
|
||||
stroke-width="0.19925"
|
||||
stroke-linecap="butt"
|
||||
stroke-linejoin="miter"
|
||||
stroke="rgb(75%, 75%, 75%)"
|
||||
stroke-opacity="1"
|
||||
stroke-miterlimit="10"
|
||||
d="M 117.583687 80.210469 L 117.583687 103.663594 "
|
||||
transform="matrix(1, 0, 0, -1, 15.346, 156.105)"
|
||||
id="path21" />
|
||||
<path
|
||||
fill="none"
|
||||
stroke-width="0.19925"
|
||||
stroke-linecap="butt"
|
||||
stroke-linejoin="miter"
|
||||
stroke="rgb(75%, 75%, 75%)"
|
||||
stroke-opacity="1"
|
||||
stroke-miterlimit="10"
|
||||
d="M 136.829781 84.058125 L 136.829781 70.003437 "
|
||||
transform="matrix(1, 0, 0, -1, 15.346, 156.105)"
|
||||
id="path22" />
|
||||
<path
|
||||
fill="none"
|
||||
stroke-width="0.19925"
|
||||
stroke-linecap="butt"
|
||||
stroke-linejoin="miter"
|
||||
stroke="rgb(75%, 75%, 75%)"
|
||||
stroke-opacity="1"
|
||||
stroke-miterlimit="10"
|
||||
d="M 17.001656 60.093281 L 17.001656 43.964375 "
|
||||
transform="matrix(1, 0, 0, -1, 15.346, 156.105)"
|
||||
id="path23" />
|
||||
<path
|
||||
fill="none"
|
||||
stroke-width="0.19925"
|
||||
stroke-linecap="butt"
|
||||
stroke-linejoin="miter"
|
||||
stroke="rgb(75%, 75%, 75%)"
|
||||
stroke-opacity="1"
|
||||
stroke-miterlimit="10"
|
||||
d="M 125.950875 81.882344 L 125.950875 109.300312 "
|
||||
transform="matrix(1, 0, 0, -1, 15.346, 156.105)"
|
||||
id="path24" />
|
||||
<path
|
||||
fill="none"
|
||||
stroke-width="0.19925"
|
||||
stroke-linecap="butt"
|
||||
stroke-linejoin="miter"
|
||||
stroke="rgb(75%, 75%, 75%)"
|
||||
stroke-opacity="1"
|
||||
stroke-miterlimit="10"
|
||||
d="M 73.302437 71.355 L 73.302437 94.800312 "
|
||||
transform="matrix(1, 0, 0, -1, 15.346, 156.105)"
|
||||
id="path25" />
|
||||
<path
|
||||
fill="none"
|
||||
stroke-width="0.19925"
|
||||
stroke-linecap="butt"
|
||||
stroke-linejoin="miter"
|
||||
stroke="rgb(75%, 75%, 75%)"
|
||||
stroke-opacity="1"
|
||||
stroke-miterlimit="10"
|
||||
d="M 49.404 66.57375 L 49.404 54.245625 "
|
||||
transform="matrix(1, 0, 0, -1, 15.346, 156.105)"
|
||||
id="path26" />
|
||||
<path
|
||||
fill="none"
|
||||
stroke-width="0.19925"
|
||||
stroke-linecap="butt"
|
||||
stroke-linejoin="miter"
|
||||
stroke="rgb(75%, 75%, 75%)"
|
||||
stroke-opacity="1"
|
||||
stroke-miterlimit="10"
|
||||
d="M 32.802437 63.253437 L 32.802437 62.362812 "
|
||||
transform="matrix(1, 0, 0, -1, 15.346, 156.105)"
|
||||
id="path27" />
|
||||
<path
|
||||
fill="none"
|
||||
stroke-width="0.19925"
|
||||
stroke-linecap="butt"
|
||||
stroke-linejoin="miter"
|
||||
stroke="rgb(75%, 75%, 75%)"
|
||||
stroke-opacity="1"
|
||||
stroke-miterlimit="10"
|
||||
d="M 55.177437 67.73 L 55.177437 95.628437 "
|
||||
transform="matrix(1, 0, 0, -1, 15.346, 156.105)"
|
||||
id="path28" />
|
||||
<path
|
||||
fill="none"
|
||||
stroke-width="0.19925"
|
||||
stroke-linecap="butt"
|
||||
stroke-linejoin="miter"
|
||||
stroke="rgb(75%, 75%, 75%)"
|
||||
stroke-opacity="1"
|
||||
stroke-miterlimit="10"
|
||||
d="M 80.2165 72.737812 L 80.2165 97.69875 "
|
||||
transform="matrix(1, 0, 0, -1, 15.346, 156.105)"
|
||||
id="path29" />
|
||||
<path
|
||||
fill="none"
|
||||
stroke-width="0.19925"
|
||||
stroke-linecap="butt"
|
||||
stroke-linejoin="miter"
|
||||
stroke="rgb(75%, 75%, 75%)"
|
||||
stroke-opacity="1"
|
||||
stroke-miterlimit="10"
|
||||
d="M 78.911812 72.476094 L 78.911812 61.659687 "
|
||||
transform="matrix(1, 0, 0, -1, 15.346, 156.105)"
|
||||
id="path30" />
|
||||
<path
|
||||
fill="none"
|
||||
stroke-width="0.19925"
|
||||
stroke-linecap="butt"
|
||||
stroke-linejoin="miter"
|
||||
stroke="rgb(75%, 75%, 75%)"
|
||||
stroke-opacity="1"
|
||||
stroke-miterlimit="10"
|
||||
d="M 130.681344 82.831562 L 130.681344 98.456562 "
|
||||
transform="matrix(1, 0, 0, -1, 15.346, 156.105)"
|
||||
id="path31" />
|
||||
<path
|
||||
fill="none"
|
||||
stroke-width="0.19925"
|
||||
stroke-linecap="butt"
|
||||
stroke-linejoin="miter"
|
||||
stroke="rgb(75%, 75%, 75%)"
|
||||
stroke-opacity="1"
|
||||
stroke-miterlimit="10"
|
||||
d="M 108.232125 78.339375 L 108.232125 74.976094 "
|
||||
transform="matrix(1, 0, 0, -1, 15.346, 156.105)"
|
||||
id="path32" />
|
||||
<path
|
||||
fill="none"
|
||||
stroke-width="0.19925"
|
||||
stroke-linecap="butt"
|
||||
stroke-linejoin="miter"
|
||||
stroke="rgb(75%, 75%, 75%)"
|
||||
stroke-opacity="1"
|
||||
stroke-miterlimit="10"
|
||||
d="M 49.529 66.601094 L 49.529 56.327656 "
|
||||
transform="matrix(1, 0, 0, -1, 15.346, 156.105)"
|
||||
id="path33" />
|
||||
<path
|
||||
fill="none"
|
||||
stroke-width="0.19925"
|
||||
stroke-linecap="butt"
|
||||
stroke-linejoin="miter"
|
||||
stroke="rgb(75%, 75%, 75%)"
|
||||
stroke-opacity="1"
|
||||
stroke-miterlimit="10"
|
||||
d="M 23.986031 61.491719 L 23.986031 88.608906 "
|
||||
transform="matrix(1, 0, 0, -1, 15.346, 156.105)"
|
||||
id="path34" />
|
||||
<path
|
||||
fill="none"
|
||||
stroke-width="0.19925"
|
||||
stroke-linecap="butt"
|
||||
stroke-linejoin="miter"
|
||||
stroke="rgb(75%, 75%, 75%)"
|
||||
stroke-opacity="1"
|
||||
stroke-miterlimit="10"
|
||||
d="M 16.298531 59.952656 L 16.298531 74.2925 "
|
||||
transform="matrix(1, 0, 0, -1, 15.346, 156.105)"
|
||||
id="path35" />
|
||||
<path
|
||||
fill="none"
|
||||
stroke-width="0.19925"
|
||||
stroke-linecap="butt"
|
||||
stroke-linejoin="miter"
|
||||
stroke="rgb(75%, 75%, 75%)"
|
||||
stroke-opacity="1"
|
||||
stroke-miterlimit="10"
|
||||
d="M 35.868844 63.866719 L 35.868844 89.07375 "
|
||||
transform="matrix(1, 0, 0, -1, 15.346, 156.105)"
|
||||
id="path36" />
|
||||
<path
|
||||
fill="none"
|
||||
stroke-width="0.19925"
|
||||
stroke-linecap="butt"
|
||||
stroke-linejoin="miter"
|
||||
stroke="rgb(75%, 75%, 75%)"
|
||||
stroke-opacity="1"
|
||||
stroke-miterlimit="10"
|
||||
d="M 94.482125 75.589375 L 94.482125 59.628437 "
|
||||
transform="matrix(1, 0, 0, -1, 15.346, 156.105)"
|
||||
id="path37" />
|
||||
<path
|
||||
fill="none"
|
||||
stroke-width="0.19925"
|
||||
stroke-linecap="butt"
|
||||
stroke-linejoin="miter"
|
||||
stroke="rgb(75%, 75%, 75%)"
|
||||
stroke-opacity="1"
|
||||
stroke-miterlimit="10"
|
||||
d="M 27.876656 62.269062 L 27.876656 78.515156 "
|
||||
transform="matrix(1, 0, 0, -1, 15.346, 156.105)"
|
||||
id="path38" />
|
||||
<path
|
||||
fill="none"
|
||||
stroke-width="0.19925"
|
||||
stroke-linecap="butt"
|
||||
stroke-linejoin="miter"
|
||||
stroke="rgb(75%, 75%, 75%)"
|
||||
stroke-opacity="1"
|
||||
stroke-miterlimit="10"
|
||||
d="M 61.513375 68.995625 L 61.513375 45.487812 "
|
||||
transform="matrix(1, 0, 0, -1, 15.346, 156.105)"
|
||||
id="path39" />
|
||||
<path
|
||||
fill="none"
|
||||
stroke-width="0.19925"
|
||||
stroke-linecap="butt"
|
||||
stroke-linejoin="miter"
|
||||
stroke="rgb(75%, 75%, 75%)"
|
||||
stroke-opacity="1"
|
||||
stroke-miterlimit="10"
|
||||
d="M 109.154 78.522969 L 109.154 104.105 "
|
||||
transform="matrix(1, 0, 0, -1, 15.346, 156.105)"
|
||||
id="path40" />
|
||||
<path
|
||||
fill="none"
|
||||
stroke-width="0.19925"
|
||||
stroke-linecap="butt"
|
||||
stroke-linejoin="miter"
|
||||
stroke="rgb(75%, 75%, 75%)"
|
||||
stroke-opacity="1"
|
||||
stroke-miterlimit="10"
|
||||
d="M 141.575875 85.007344 L 141.575875 63.390156 "
|
||||
transform="matrix(1, 0, 0, -1, 15.346, 156.105)"
|
||||
id="path41" />
|
||||
<path
|
||||
fill="none"
|
||||
stroke-width="0.19925"
|
||||
stroke-linecap="butt"
|
||||
stroke-linejoin="miter"
|
||||
stroke="rgb(75%, 75%, 75%)"
|
||||
stroke-opacity="1"
|
||||
stroke-miterlimit="10"
|
||||
d="M 33.134469 63.319844 L 33.134469 48.030781 "
|
||||
transform="matrix(1, 0, 0, -1, 15.346, 156.105)"
|
||||
id="path42" />
|
||||
<path
|
||||
fill="none"
|
||||
stroke-width="0.19925"
|
||||
stroke-linecap="butt"
|
||||
stroke-linejoin="miter"
|
||||
stroke="rgb(75%, 75%, 75%)"
|
||||
stroke-opacity="1"
|
||||
stroke-miterlimit="10"
|
||||
d="M 85.462594 73.784687 L 85.462594 80.765156 "
|
||||
transform="matrix(1, 0, 0, -1, 15.346, 156.105)"
|
||||
id="path43" />
|
||||
<path
|
||||
fill="none"
|
||||
stroke-width="0.19925"
|
||||
stroke-linecap="butt"
|
||||
stroke-linejoin="miter"
|
||||
stroke="rgb(75%, 75%, 75%)"
|
||||
stroke-opacity="1"
|
||||
stroke-miterlimit="10"
|
||||
d="M 31.521187 62.999531 L 31.521187 44.23 "
|
||||
transform="matrix(1, 0, 0, -1, 15.346, 156.105)"
|
||||
id="path44" />
|
||||
<path
|
||||
fill="none"
|
||||
stroke-width="0.19925"
|
||||
stroke-linecap="butt"
|
||||
stroke-linejoin="miter"
|
||||
stroke="rgb(75%, 75%, 75%)"
|
||||
stroke-opacity="1"
|
||||
stroke-miterlimit="10"
|
||||
d="M 79.845406 72.663594 L 79.845406 88.487812 "
|
||||
transform="matrix(1, 0, 0, -1, 15.346, 156.105)"
|
||||
id="path45" />
|
||||
<path
|
||||
fill="none"
|
||||
stroke-width="0.19925"
|
||||
stroke-linecap="butt"
|
||||
stroke-linejoin="miter"
|
||||
stroke="rgb(75%, 75%, 75%)"
|
||||
stroke-opacity="1"
|
||||
stroke-miterlimit="10"
|
||||
d="M 67.775094 70.249531 L 67.775094 69.421406 "
|
||||
transform="matrix(1, 0, 0, -1, 15.346, 156.105)"
|
||||
id="path46" />
|
||||
<path
|
||||
fill="none"
|
||||
stroke-width="0.19925"
|
||||
stroke-linecap="butt"
|
||||
stroke-linejoin="miter"
|
||||
stroke="rgb(75%, 75%, 75%)"
|
||||
stroke-opacity="1"
|
||||
stroke-miterlimit="10"
|
||||
d="M 78.626656 72.4175 L 78.626656 57.780781 "
|
||||
transform="matrix(1, 0, 0, -1, 15.346, 156.105)"
|
||||
id="path47" />
|
||||
<g
|
||||
fill="rgb(0%, 0%, 0%)"
|
||||
fill-opacity="1"
|
||||
id="g47">
|
||||
<use
|
||||
xlink:href="#glyph-0-1"
|
||||
x="60.728"
|
||||
y="79.778"
|
||||
id="use47" />
|
||||
</g>
|
||||
<g
|
||||
fill="rgb(0%, 0%, 0%)"
|
||||
fill-opacity="1"
|
||||
id="g48">
|
||||
<use
|
||||
xlink:href="#glyph-0-1"
|
||||
x="73.841"
|
||||
y="104.616"
|
||||
id="use48" />
|
||||
</g>
|
||||
<g
|
||||
fill="rgb(0%, 0%, 0%)"
|
||||
fill-opacity="1"
|
||||
id="g49">
|
||||
<use
|
||||
xlink:href="#glyph-0-1"
|
||||
x="49.412"
|
||||
y="85.108"
|
||||
id="use49" />
|
||||
</g>
|
||||
<g
|
||||
fill="rgb(0%, 0%, 0%)"
|
||||
fill-opacity="1"
|
||||
id="g50">
|
||||
<use
|
||||
xlink:href="#glyph-0-1"
|
||||
x="136.364"
|
||||
y="86.704"
|
||||
id="use50" />
|
||||
</g>
|
||||
<g
|
||||
fill="rgb(0%, 0%, 0%)"
|
||||
fill-opacity="1"
|
||||
id="g51">
|
||||
<use
|
||||
xlink:href="#glyph-0-1"
|
||||
x="17.494"
|
||||
y="106.887"
|
||||
id="use51" />
|
||||
</g>
|
||||
<g
|
||||
fill="rgb(0%, 0%, 0%)"
|
||||
fill-opacity="1"
|
||||
id="g52">
|
||||
<use
|
||||
xlink:href="#glyph-0-1"
|
||||
x="122.44"
|
||||
y="88.57"
|
||||
id="use52" />
|
||||
</g>
|
||||
<g
|
||||
fill="rgb(0%, 0%, 0%)"
|
||||
fill-opacity="1"
|
||||
id="g53">
|
||||
<use
|
||||
xlink:href="#glyph-0-1"
|
||||
x="33.198"
|
||||
y="118.387"
|
||||
id="use53" />
|
||||
</g>
|
||||
<g
|
||||
fill="rgb(0%, 0%, 0%)"
|
||||
fill-opacity="1"
|
||||
id="g54">
|
||||
<use
|
||||
xlink:href="#glyph-0-1"
|
||||
x="121.773"
|
||||
y="102.094"
|
||||
id="use54" />
|
||||
</g>
|
||||
<g
|
||||
fill="rgb(0%, 0%, 0%)"
|
||||
fill-opacity="1"
|
||||
id="g55">
|
||||
<use
|
||||
xlink:href="#glyph-0-1"
|
||||
x="92.049"
|
||||
y="80.656"
|
||||
id="use55" />
|
||||
</g>
|
||||
<g
|
||||
fill="rgb(0%, 0%, 0%)"
|
||||
fill-opacity="1"
|
||||
id="g56">
|
||||
<use
|
||||
xlink:href="#glyph-0-1"
|
||||
x="119.307"
|
||||
y="51.558"
|
||||
id="use56" />
|
||||
</g>
|
||||
<g
|
||||
fill="rgb(0%, 0%, 0%)"
|
||||
fill-opacity="1"
|
||||
id="g57">
|
||||
<use
|
||||
xlink:href="#glyph-0-1"
|
||||
x="44.979"
|
||||
y="96.322"
|
||||
id="use57" />
|
||||
</g>
|
||||
<g
|
||||
fill="rgb(0%, 0%, 0%)"
|
||||
fill-opacity="1"
|
||||
id="g58">
|
||||
<use
|
||||
xlink:href="#glyph-0-1"
|
||||
x="87.471"
|
||||
y="81.051"
|
||||
id="use58" />
|
||||
</g>
|
||||
<g
|
||||
fill="rgb(0%, 0%, 0%)"
|
||||
fill-opacity="1"
|
||||
id="g59">
|
||||
<use
|
||||
xlink:href="#glyph-0-1"
|
||||
x="92.655"
|
||||
y="71.244"
|
||||
id="use59" />
|
||||
</g>
|
||||
<g
|
||||
fill="rgb(0%, 0%, 0%)"
|
||||
fill-opacity="1"
|
||||
id="g60">
|
||||
<use
|
||||
xlink:href="#glyph-0-1"
|
||||
x="103.093"
|
||||
y="65.325"
|
||||
id="use60" />
|
||||
</g>
|
||||
<g
|
||||
fill="rgb(0%, 0%, 0%)"
|
||||
fill-opacity="1"
|
||||
id="g61">
|
||||
<use
|
||||
xlink:href="#glyph-0-1"
|
||||
x="96.693"
|
||||
y="96.162"
|
||||
id="use61" />
|
||||
</g>
|
||||
<g
|
||||
fill="rgb(0%, 0%, 0%)"
|
||||
fill-opacity="1"
|
||||
id="g62">
|
||||
<use
|
||||
xlink:href="#glyph-0-1"
|
||||
x="131.542"
|
||||
y="52.971"
|
||||
id="use62" />
|
||||
</g>
|
||||
<g
|
||||
fill="rgb(0%, 0%, 0%)"
|
||||
fill-opacity="1"
|
||||
id="g63">
|
||||
<use
|
||||
xlink:href="#glyph-0-1"
|
||||
x="150.79"
|
||||
y="86.629"
|
||||
id="use63" />
|
||||
</g>
|
||||
<g
|
||||
fill="rgb(0%, 0%, 0%)"
|
||||
fill-opacity="1"
|
||||
id="g64">
|
||||
<use
|
||||
xlink:href="#glyph-0-1"
|
||||
x="30.961"
|
||||
y="112.667"
|
||||
id="use64" />
|
||||
</g>
|
||||
<g
|
||||
fill="rgb(0%, 0%, 0%)"
|
||||
fill-opacity="1"
|
||||
id="g65">
|
||||
<use
|
||||
xlink:href="#glyph-0-1"
|
||||
x="139.911"
|
||||
y="47.335"
|
||||
id="use65" />
|
||||
</g>
|
||||
<g
|
||||
fill="rgb(0%, 0%, 0%)"
|
||||
fill-opacity="1"
|
||||
id="g66">
|
||||
<use
|
||||
xlink:href="#glyph-0-1"
|
||||
x="87.263"
|
||||
y="61.833"
|
||||
id="use66" />
|
||||
</g>
|
||||
<g
|
||||
fill="rgb(0%, 0%, 0%)"
|
||||
fill-opacity="1"
|
||||
id="g67">
|
||||
<use
|
||||
xlink:href="#glyph-0-1"
|
||||
x="63.363"
|
||||
y="102.386"
|
||||
id="use67" />
|
||||
</g>
|
||||
<g
|
||||
fill="rgb(0%, 0%, 0%)"
|
||||
fill-opacity="1"
|
||||
id="g68">
|
||||
<use
|
||||
xlink:href="#glyph-0-1"
|
||||
x="46.762"
|
||||
y="94.27"
|
||||
id="use68" />
|
||||
</g>
|
||||
<g
|
||||
fill="rgb(0%, 0%, 0%)"
|
||||
fill-opacity="1"
|
||||
id="g69">
|
||||
<use
|
||||
xlink:href="#glyph-0-1"
|
||||
x="69.139"
|
||||
y="61.006"
|
||||
id="use69" />
|
||||
</g>
|
||||
<g
|
||||
fill="rgb(0%, 0%, 0%)"
|
||||
fill-opacity="1"
|
||||
id="g70">
|
||||
<use
|
||||
xlink:href="#glyph-0-1"
|
||||
x="94.176"
|
||||
y="58.936"
|
||||
id="use70" />
|
||||
</g>
|
||||
<g
|
||||
fill="rgb(0%, 0%, 0%)"
|
||||
fill-opacity="1"
|
||||
id="g71">
|
||||
<use
|
||||
xlink:href="#glyph-0-1"
|
||||
x="92.871"
|
||||
y="94.973"
|
||||
id="use71" />
|
||||
</g>
|
||||
<g
|
||||
fill="rgb(0%, 0%, 0%)"
|
||||
fill-opacity="1"
|
||||
id="g72">
|
||||
<use
|
||||
xlink:href="#glyph-0-1"
|
||||
x="144.642"
|
||||
y="58.179"
|
||||
id="use72" />
|
||||
</g>
|
||||
<g
|
||||
fill="rgb(0%, 0%, 0%)"
|
||||
fill-opacity="1"
|
||||
id="g73">
|
||||
<use
|
||||
xlink:href="#glyph-0-1"
|
||||
x="122.192"
|
||||
y="81.657"
|
||||
id="use73" />
|
||||
</g>
|
||||
<g
|
||||
fill="rgb(0%, 0%, 0%)"
|
||||
fill-opacity="1"
|
||||
id="g74">
|
||||
<use
|
||||
xlink:href="#glyph-0-1"
|
||||
x="63.488"
|
||||
y="100.304"
|
||||
id="use74" />
|
||||
</g>
|
||||
<g
|
||||
fill="rgb(0%, 0%, 0%)"
|
||||
fill-opacity="1"
|
||||
id="g75">
|
||||
<use
|
||||
xlink:href="#glyph-0-1"
|
||||
x="37.946"
|
||||
y="68.026"
|
||||
id="use75" />
|
||||
</g>
|
||||
<g
|
||||
fill="rgb(0%, 0%, 0%)"
|
||||
fill-opacity="1"
|
||||
id="g76">
|
||||
<use
|
||||
xlink:href="#glyph-0-1"
|
||||
x="30.259"
|
||||
y="82.34"
|
||||
id="use76" />
|
||||
</g>
|
||||
<g
|
||||
fill="rgb(0%, 0%, 0%)"
|
||||
fill-opacity="1"
|
||||
id="g77">
|
||||
<use
|
||||
xlink:href="#glyph-0-1"
|
||||
x="49.831"
|
||||
y="67.561"
|
||||
id="use77" />
|
||||
</g>
|
||||
<g
|
||||
fill="rgb(0%, 0%, 0%)"
|
||||
fill-opacity="1"
|
||||
id="g78">
|
||||
<use
|
||||
xlink:href="#glyph-0-1"
|
||||
x="108.444"
|
||||
y="97.003"
|
||||
id="use78" />
|
||||
</g>
|
||||
<g
|
||||
fill="rgb(0%, 0%, 0%)"
|
||||
fill-opacity="1"
|
||||
id="g79">
|
||||
<use
|
||||
xlink:href="#glyph-0-1"
|
||||
x="41.836"
|
||||
y="78.118"
|
||||
id="use79" />
|
||||
</g>
|
||||
<g
|
||||
fill="rgb(0%, 0%, 0%)"
|
||||
fill-opacity="1"
|
||||
id="g80">
|
||||
<use
|
||||
xlink:href="#glyph-0-1"
|
||||
x="75.475"
|
||||
y="111.147"
|
||||
id="use80" />
|
||||
</g>
|
||||
<g
|
||||
fill="rgb(0%, 0%, 0%)"
|
||||
fill-opacity="1"
|
||||
id="g81">
|
||||
<use
|
||||
xlink:href="#glyph-0-1"
|
||||
x="123.115"
|
||||
y="52.529"
|
||||
id="use81" />
|
||||
</g>
|
||||
<g
|
||||
fill="rgb(0%, 0%, 0%)"
|
||||
fill-opacity="1"
|
||||
id="g82">
|
||||
<use
|
||||
xlink:href="#glyph-0-1"
|
||||
x="155.535"
|
||||
y="93.242"
|
||||
id="use82" />
|
||||
</g>
|
||||
<g
|
||||
fill="rgb(0%, 0%, 0%)"
|
||||
fill-opacity="1"
|
||||
id="g83">
|
||||
<use
|
||||
xlink:href="#glyph-0-1"
|
||||
x="47.094"
|
||||
y="108.603"
|
||||
id="use83" />
|
||||
</g>
|
||||
<g
|
||||
fill="rgb(0%, 0%, 0%)"
|
||||
fill-opacity="1"
|
||||
id="g84">
|
||||
<use
|
||||
xlink:href="#glyph-0-1"
|
||||
x="99.424"
|
||||
y="75.869"
|
||||
id="use84" />
|
||||
</g>
|
||||
<g
|
||||
fill="rgb(0%, 0%, 0%)"
|
||||
fill-opacity="1"
|
||||
id="g85">
|
||||
<use
|
||||
xlink:href="#glyph-0-1"
|
||||
x="45.483"
|
||||
y="112.404"
|
||||
id="use85" />
|
||||
</g>
|
||||
<g
|
||||
fill="rgb(0%, 0%, 0%)"
|
||||
fill-opacity="1"
|
||||
id="g86">
|
||||
<use
|
||||
xlink:href="#glyph-0-1"
|
||||
x="93.806"
|
||||
y="68.145"
|
||||
id="use86" />
|
||||
</g>
|
||||
<g
|
||||
fill="rgb(0%, 0%, 0%)"
|
||||
fill-opacity="1"
|
||||
id="g87">
|
||||
<use
|
||||
xlink:href="#glyph-0-1"
|
||||
x="81.735"
|
||||
y="87.214"
|
||||
id="use87" />
|
||||
</g>
|
||||
<g
|
||||
fill="rgb(0%, 0%, 0%)"
|
||||
fill-opacity="1"
|
||||
id="g88">
|
||||
<use
|
||||
xlink:href="#glyph-0-1"
|
||||
x="92.588"
|
||||
y="98.852"
|
||||
id="use88" />
|
||||
</g>
|
||||
<path
|
||||
fill="none"
|
||||
stroke-width="0.79701"
|
||||
stroke-linecap="butt"
|
||||
stroke-linejoin="miter"
|
||||
stroke="rgb(0%, 0%, 100%)"
|
||||
stroke-opacity="1"
|
||||
stroke-miterlimit="10"
|
||||
d="M 0.00165625 56.694844 L 141.732125 85.038594 "
|
||||
transform="matrix(1, 0, 0, -1, 15.346, 156.105)"
|
||||
id="path88" />
|
||||
</svg>
|
After Width: | Height: | Size: 24 KiB |
|
@ -0,0 +1,45 @@
|
|||
\documentclass[margin=0.5cm]{standalone}
|
||||
\usepackage{tikz}
|
||||
\usepackage{luacode}
|
||||
|
||||
|
||||
\begin{document}
|
||||
|
||||
\begin{tikzpicture}
|
||||
% Draw axes
|
||||
\draw[->] (0,0) -- (5,0);
|
||||
\draw[->] (0,0) -- (0,5);
|
||||
|
||||
\directlua{
|
||||
function runif(min, max)
|
||||
return min + (max - min) * math.random()
|
||||
end
|
||||
math.randomseed(42)
|
||||
x_min = 0
|
||||
x_max = 5
|
||||
error_min = -1
|
||||
error_max = 1
|
||||
beta0 = 2
|
||||
beta1 = 1/5
|
||||
x_values = {}
|
||||
y_values = {}
|
||||
for i=1,42 do
|
||||
x = runif(x_min, x_max)
|
||||
epsilon = runif(error_min, error_max)
|
||||
y_hat = beta0 + beta1 * x
|
||||
y = y_hat + epsilon
|
||||
tex.print("\\draw[-,very thin, lightgray] ("..x..","..y_hat..") -- ("..x..","..y..") ;")
|
||||
x_values[i] = x
|
||||
y_values[i] = y
|
||||
end
|
||||
for i=1,42 do
|
||||
x = x_values[i]
|
||||
y = y_values[i]
|
||||
tex.print("\\node[black] at ("..x..","..y..") {.};")
|
||||
end
|
||||
}
|
||||
% Draw least square line
|
||||
\draw[-,blue,thick] (0,2) -- (5,\directlua{tex.print(5*beta1+beta0)});
|
||||
% Draw square norm
|
||||
\end{tikzpicture}
|
||||
\end{document}
|
Binary file not shown.
|
@ -0,0 +1,42 @@
|
|||
% ref. https://tex.stackexchange.com/a/523362/235607
|
||||
\documentclass[tikz]{standalone}
|
||||
\usepackage{tikz-3dplot}
|
||||
\usepackage{tkz-euclide}
|
||||
\usepackage{mathtools}
|
||||
\begin{document}
|
||||
\tdplotsetmaincoords{50}{0}
|
||||
\begin{tikzpicture}[tdplot_main_coords,bullet/.style={circle,inner
|
||||
sep=1pt,fill=black,fill opacity=1}]
|
||||
\begin{scope}[canvas is xy plane at z=0]
|
||||
\tkzDefPoints{-2/-1/A,3/-1/B,4/2/C}
|
||||
\tkzDefParallelogram(A,B,C)
|
||||
\tkzGetPoint{D}
|
||||
\tkzDrawPolygon[fill=gray!25!white](A,B,C,D)
|
||||
|
||||
\end{scope}
|
||||
% Draw the rectangle triangle scheme
|
||||
\begin{scope}[canvas is xz plane at y=1]
|
||||
\draw[thick,fill=white,fill opacity=0.7,nodes={opacity=1}]
|
||||
(2,0) node[bullet,label=right:{$\bar{\mathbf{Y}}$}] (Y_bar) {}
|
||||
-- (0,-0.5) node (B) {}
|
||||
-- (0,3) node[label=above:{$\mathbf{Y}$}] (Y) {} -- cycle;
|
||||
% Right angle annotation
|
||||
\tkzPicRightAngle[draw,
|
||||
angle eccentricity=.5,angle radius=2mm](Y,B,Y_bar)
|
||||
% epsilon: Y - X \hat{\beta} curly brackets annotations
|
||||
\draw[decorate,decoration={brace,
|
||||
amplitude=8pt},xshift=0pt,very thin,gray] (B) -- (Y) node [black,midway,xshift=-1.25em,yshift=0em] {\color{blue}$b$};
|
||||
% X\hat{\beta} - \hat{Y}
|
||||
\draw[decorate,decoration={brace,
|
||||
amplitude=8pt},xshift=0pt,very thin,gray] (Y_bar) -- (B) node [black,midway,xshift=0.5em,yshift=-1em] {\color{blue}$a$};
|
||||
%
|
||||
\draw[decorate,decoration={brace,
|
||||
amplitude=8pt},xshift=0pt,very thin,gray] (Y) -- (Y_bar) node [black,midway,xshift=1em,yshift=1em] {\color{blue}$c$};
|
||||
\end{scope}
|
||||
% Coordinate system
|
||||
\begin{scope}[canvas is xy plane at z=0]
|
||||
\draw[->] (2,1) -- node [above] {$\mathbf{1}$} ++(-1,0) ;
|
||||
\draw[->] (2,1) -- ++(-0.45,-1) node [right] {$X_1$};
|
||||
\end{scope}
|
||||
\end{tikzpicture}
|
||||
\end{document}
|
Binary file not shown.
|
@ -0,0 +1,26 @@
|
|||
\documentclass[tikz,border=3.14mm]{standalone}
|
||||
\usepackage{tikz-3dplot}
|
||||
\begin{document}
|
||||
\tdplotsetmaincoords{105}{-30}
|
||||
\usetikzlibrary{patterns}
|
||||
\begin{tikzpicture}[tdplot_main_coords,font=\sffamily]
|
||||
\tdplotsetrotatedcoords{00}{30}{0}
|
||||
\begin{scope}[tdplot_rotated_coords]
|
||||
\begin{scope}[canvas is xy plane at z=0]
|
||||
\draw[fill opacity=0,pattern=north west lines,pattern color=gray] (-2,-3) rectangle (2,3);
|
||||
\draw[gray,fill=lightgray,fill opacity=0.75] (-2,-3) rectangle (2,3);
|
||||
\draw[very thick] (-2,0) -- (2,0);
|
||||
\path (-150:2) coordinate (H) (-1.5,0) coordinate(X);
|
||||
\pgflowlevelsynccm
|
||||
\draw[very thick,-stealth,gray] (0,0) -- (-30:1.5);
|
||||
\end{scope}
|
||||
\draw[stealth-] (H) -- ++ (-1,0,0.2) node[pos=1.3]{$H$};
|
||||
\draw[stealth-] (X) -- ++ (0,1,0.2) node[pos=1.3]{$X$};
|
||||
\draw[very thick,-stealth] (0,0,0) coordinate (O) -- (0,0,3) node[right]{$p$};
|
||||
\end{scope}
|
||||
\pgfmathsetmacro{\Radius}{1.5}
|
||||
\draw[-stealth] (O)-- (2.5*\Radius,0,0) node[pos=1.15] {$x$};
|
||||
\draw[-stealth] (O) -- (0,3.5*\Radius,0) node[pos=1.15] {$z$};
|
||||
\draw[-stealth] (O) -- (0,0,2.5*\Radius) node[pos=1.05] {$y$};
|
||||
\end{tikzpicture}
|
||||
\end{document}
|
Binary file not shown.
|
@ -0,0 +1,27 @@
|
|||
\documentclass[margin=0.5cm]{standalone}
|
||||
\usepackage{tikz}
|
||||
\usepackage{tkz-euclide}
|
||||
\usepackage{mathtools}
|
||||
|
||||
\begin{document}
|
||||
\begin{tikzpicture}
|
||||
\coordinate (A) at (0.5, 1) {};
|
||||
\coordinate (B) at (-0.5, -1) {};
|
||||
\coordinate (C) at (1.25, -0.70) {};
|
||||
\coordinate (0) at (0, 0) {};
|
||||
|
||||
% left angle
|
||||
\tkzMarkRightAngle[draw=black,size=0.1](A,0,C);
|
||||
\draw[lightgray,very thin] (A) -- (C);
|
||||
% Curly brace annotation for ||u-v||
|
||||
\draw[decorate,decoration={brace,
|
||||
amplitude=10pt},xshift=0pt,yshift=4pt,very thin] (A) -- (C) node [black,midway,xshift=27pt,yshift=0.5em] {$\lVert u-v \rVert$};
|
||||
\draw[lightgray,very thin] (B) -- (C);
|
||||
|
||||
% axis lines
|
||||
\draw[->] (0) -- (A) node[above] {$u$};
|
||||
\draw[->] (0) -- (B) node[below] {$-u$};
|
||||
\draw[->] (0) -- (C) node[right] {$v$};
|
||||
|
||||
\end{tikzpicture}
|
||||
\end{document}
|
|
@ -0,0 +1,68 @@
|
|||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
% Course -- Multivariate Statistics --- GENIOMHE --- M1 - S1
|
||||
%
|
||||
% Author: Samuel Ortion <samuel@ortion.fr>
|
||||
% Version: 0.1.0
|
||||
% Date: 2023
|
||||
% License: CC-By-SA 4.0+ International
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
|
||||
\documentclass[
|
||||
a4paper,
|
||||
fontsize=10pt,
|
||||
fleqn,
|
||||
oneside
|
||||
]{scrbook}
|
||||
|
||||
\usepackage{mus}
|
||||
|
||||
\titlehead{GENIOMHE}
|
||||
\title{Multivariate\newline{}Statistics}
|
||||
\author{Samuel Ortion}
|
||||
\teacher{Cyril Dalmasso}
|
||||
\cursus{GENIOMHE}
|
||||
\university{Université Paris-Saclay, Université d'Évry val d'Essonne}
|
||||
\semester{M1 - S1}
|
||||
\date{Fall 2023}
|
||||
|
||||
\definecolor{myblue}{HTML}{5654fa}
|
||||
\colorlet{primary}{myblue}
|
||||
|
||||
\hypersetup{
|
||||
pdftitle={Course - Multivariate Statistics},
|
||||
pdfauthor={Samuel Ortion},
|
||||
pdfsubject={},
|
||||
pdfkeywords={},
|
||||
pdfcreator={LaTeX}
|
||||
}
|
||||
|
||||
\addbibresource{references}
|
||||
|
||||
\usepackage[
|
||||
type={CC},
|
||||
modifier={by-sa},
|
||||
version={4.0},
|
||||
]{doclicense}
|
||||
|
||||
\input{preamble}
|
||||
\input{glossary}
|
||||
\input{definitions}
|
||||
|
||||
|
||||
\makeindex%
|
||||
\makeglossary%
|
||||
\begin{document}
|
||||
|
||||
\maketitlefullpage
|
||||
|
||||
\tableofcontents
|
||||
|
||||
\doclicenseThis%
|
||||
|
||||
\input{content/introduction}
|
||||
|
||||
\input{content/chapters/include}
|
||||
|
||||
\input{content/conclusion}
|
||||
|
||||
\end{document}
|
|
@ -0,0 +1,7 @@
|
|||
\usepackage{pgffor}
|
||||
\usetikzlibrary{math}
|
||||
\usepackage{standalone}
|
||||
\usepackage{tikz-3dplot}
|
||||
\usepackage{tkz-euclide}
|
||||
\usepackage{nicematrix}
|
||||
\usepackage{luacode}
|
|
@ -0,0 +1,57 @@
|
|||
local function matrix_product_repr(m1, m2)
|
||||
if #m1[1] ~= #m2 then -- inner matrix-dimensions must agree
|
||||
return nil
|
||||
end
|
||||
|
||||
local res = {}
|
||||
|
||||
for i = 1, #m1 do
|
||||
res[i] = {}
|
||||
for j = 1, #m2[1] do
|
||||
res[i][j] = " "
|
||||
for k = 1, #m2 do
|
||||
if k ~= 1 then
|
||||
res[i][j] = res[i][j] .. " + "
|
||||
end
|
||||
res[i][j] = res[i][j] .. m1[i][k] .. " " .. m2[k][j]
|
||||
end
|
||||
end
|
||||
end
|
||||
return res
|
||||
end
|
||||
|
||||
local function dump_matrix(matrix)
|
||||
local repr = ""
|
||||
for i, row in ipairs(matrix) do
|
||||
for j, cell in ipairs(row) do
|
||||
repr = repr .. " " .. cell
|
||||
if j ~= #row then
|
||||
repr = repr .. " & "
|
||||
end
|
||||
end
|
||||
if i ~= #matrix then
|
||||
repr = repr .. [[ \\ ]]
|
||||
end
|
||||
repr = repr .. "\n"
|
||||
end
|
||||
return repr
|
||||
end
|
||||
|
||||
local m1 = {
|
||||
{"a", "b", "c", "d"},
|
||||
{"e", "f", "g", "h"},
|
||||
{"i", "j", "k", "l"}
|
||||
}
|
||||
local m2 = {
|
||||
{"x_1"},
|
||||
{"x_2"},
|
||||
{"x_3"},
|
||||
{"x_4"}
|
||||
}
|
||||
|
||||
print(dump_matrix(matrix_product_repr(m1, m2)))
|
||||
|
||||
return {
|
||||
matrix_product_repr = matrix_product_repr,
|
||||
dump_matrix = dump_matrix
|
||||
}
|
Loading…
Reference in New Issue