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Introduction

@ Definition 1: Long Term Nonprocessor (LTNP)

Patient who will remain a long time in good health condition, even with a large viral load (cf. HIV).

0 Example 1: Genotype: Qualitative or Quantitative?

AA 0
SNP:{AB — |1,
BB 2

thus we might consider genotype either as a qualitative variable or quantitative variable.

When the variable are quantitative, we use regression, whereas for qualitative variables, we use an
analysis of variance.






LLinear Model

2.1. Simple Linear Regression

Y, =00+ /1 X +ei

Y =X3+e.

Yi I €1

€1
e 1 Xa Bo
1 =1 . + | €2
: Do B1 :
Y, 1 X, e

Assumptions

(A1) &; are independent;
(As) €; are identically distributed,;

(A3) g; are i.i.d ~ N(0,0?) (homoscedasticity).

2.2. Generalized Linear Model

g(E(Y)) = X5
with g being
o Logistic regression: g(v) = log (l%v), for instance for boolean values,

« Poisson regression: g(v) = log(v), for instance for discrete variables.

2.2.1. Penalized Regression

When the number of variables is large, e.g, when the number of explanatory variable is above the number
of observations, if p >> n (p: the number of explanatory variable, n is the number of observations), we
cannot estimate the parameters. In order to estimate the parameters, we can use penalties (additional
terms).

Lasso regression, Elastic Net, etc.



2. Linear Model

2.2.2. Statistical Analysis Workflow

Step 1. Graphical representation;
Step 2. ...
Y=XB+e¢,

is noted equivalently as

(1 1 z11 212 3 €1
0
Y2 1 ma1 w22 €2
= Bi| +
Y3 1 z31 x32 3 €3
2
Ya 1 74 T4 €4

2.3. Parameter Estimation

2.3.1. Simple Linear Regression

2.3.2. General Case

If X”X is invertible, the OLS estimator is:
B =X'xX)"'xTy (2.1)

2.3.3. Ordinary Least Square Algorithm

We want to minimize the distance between XS and Y:
min|Y — X3|?
(See chapter 3).
=X = proj(l’X)Y
=Yv € w, vy = vproj”(y)
=Vi:
X, Y =X, X B where B is the estimator of
=X"y =X"TXj3
= (XX XY = (X 'X)Y(XTX) B
=4=(X"X)"'XTY
This formula comes from the orthogonal projection of Y on the vector subspace defined by the
explaAHatory variables X
X3 is the closest point to Y in the subspace generated by X.

If H is the projection matrix of the subspace generated by X, XY is the projection on Y on this
subspace, that corresponds to XB.

2.4. Sum of squares

Y-XBLXB-Y1ifleV,so
Y —Y1| =Y -X3|*+ X3 -Y1?

Total SS Residual SS Explicated SS




2. Linear Model

Figure 2.1. Orthogonal projection of Y on plan generated by the base described by X. a corresponds
to |X3 — Y| and b corresponds to é = ||[Y — 5X||?
and ¢ corresponds to |Y — Y||2.

Figure 2.2. Ordinary least squares and regression line with simulated data.

2.5. Coefficient of Determination: R?

@ Definition 2: R?

2V 2 _ 2112
_IXB-YaP Y -XB? _

0< R?= _ =
- Y —Y1|? Y -Y1|> ™

proportion of variation of Y explained by the model.

6 Definition 3: Model dimension

Let M be a model. The dimension of M is the dimension of the subspace generated by X, that is

the number of parameters in the S vector.

2

Nb. The dimension of the model is not the number of parameter, as ¢ is one of the model parameters.
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2.6. (zaussian vectors

@ Definition 4: Normal distribution

@ Definition 5: Gaussian vector

A random vector Y € R" is a gaussian vector if every linear combination of its component is ...

Property 1. m =E(Y) = (my,...,m,)T, where m; = E(Y;)

Y ~N,(m,X)
where ¥ is the variance-covariance matriz!

L=E[(Y-m)(Y -m)"].
0 Remark 1
Cov(Y;,Y;) = Var(Y;)
@ Definition 6: Covariance

Cov(Y;,Yj) = E((Y; — E(Y;))(Y; — E(Y;)))

When two variable are linked, the covariance is large.
If two variables X,Y are independent, Cov(X,Y) = 0.

@ Definition 7: Correlation coefficient

E((Y: - E(Y;))(Y; — E(Y))))
VE(®Y: - E(Y)) - E(Y; — E(Yj))

Cor(¥;, Y;) =

Covariance is really sensitive to scale of variables. For instance, if we measure distance in millimeters,
the covariance would be larger than in the case of a measure expressed in metters. Thus the correlation
coefficient, which is a sort of normalized covariance is useful, to be able to compare the values.

0 Remark 2

Cov(Y;, Y;) = E((Y; — E(Y;)(Y; — E(Y;)))
=E((Y; — E(Y3))?)
= Var(Y;)




2. Linear Model

V(1)

= cov(i@%) V() (2:2)

1.0 0
In=10 .0
0 0 1

Theorem 1: Cochran Theorem (Consequence)
Let Z be a gaussian vector: Z ~ N, (0, I,).

o If V1,V,, are orthogonal subspaces of R™ with dimensions 71, no such that
1
R =V ® Va.

o If Zy,Z5 are orthogonal of Z on Vi and V5 ie. Zy =TIy, (Z) =11Y and Zy =11y, (Z) = 1, Y...
(look to the slides)

Definition 9: Chi 2 distribution
If Xy,...,X, iid. ~AN(0,1), then;,

X24.. X2~ 2

2.6.1. Estimator’s properties

Iy = X(XTX)"1xT

m=Xp=XX"'X)"'XTY
SO
=1yY

According to Cochran theorem, we can deduce that the estimator of the predicted value m is independent
£2
o)

All the sum of squares follows a x? distribution:

Property 2.
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2.6.2. Estimators consistency

If ¢ <,

2
g P ¥
'0'20'

n—oo

o If (XTX)7L..

We can derive statistical test from these properties.

2.7. Statistical tests
2.7.1. Student t-test

0—0
~ t

V() Ho

n

where

10



Flements of
[Linear

Algebra

Let u a vector, we will use interchangeably the following notations: u and

o Remark 3: vector

Let u = and v =

Up, Un
6 Definition 10: Scalar Product (Dot Product)

U1

(u,v) = (ul,...,uv)

Un

= U1V1 + U2V2 + ... + UpVy

We may use (u,v) or u - v notations.

Dot product properties

Commutative (u,v) = (v,u)

Distributive ((u +v),w) = (u, w) + (v, w)
(u, v) = [lull x [Jv]| x cos(w, )

(a,a) = [lal|?

11



3. Elements of Linear Algebra

Figure 3.1. Scalar product of two orthogonal vectors.

6 Definition 11: Norm

Length of the vector.

lull = v/{u, v)

6 Definition 12: Distance
dist(u,v) = ||u — v

@ Definition 13: Orthogonality

0 Remark 4

(dist(u,v))? = [lu—v|?,
and

(v —u,v—u)

(v—u,v—u) = <v,v)—|—<u,u)—2(u,v>

= [[oll* + [|u®
= —2(u,v)
lu = ol* = Jlull® + [[o]* - 2(u, v)

lu+]* = [[ul® + [ + 2{u, v)
@ Proposition 1: Scalar product of orthogonal vectors

ulve (u,v)=0

12



3. Elements of Linear Algebra

Indeed. ||u —v||? = ||u + v||?, as illustrated in Figure 3.1.

< — 2(u,v) = 2(u,v)

<d{u,vy =0
<(u,vy =0
O
Theorem 2: Pythagorean theorem
If u L v, then ||u+v||? = |Jul|® + ||v]* .
Definition 14: Orthogonal Projection
W
Let y=1] . | € R® and w a subspace of R™. ) can be written as the orthogonal projection of y on w:
Yn

Y =proj*(y) + z,

where

z € wt
proj*(y) € w

There is only one vector ) that ?
The scalar product between z and (?) is zero.

Property 3. proj*(y) is the closest vector to y that belongs to w.

Definition 15: Matrix

A matrix is an application, that is, a function that transform a thing into another, it is a linear
function.

0 Example 2: Matrix application

Let A be a matrix:

=2 )

~ [axy + bxo
~ \exy + das

13
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Figure 3.2. Coordinate systems

[~ Example 2 continued

Similarly,

Z1

a b ¢ d ary + bxo + cxr3 + dzy
T

e f g h 2] = ex1 + fxro + grs + hxy

. . T3 . .

i j k1 1x1 + jro + kxs + lxy
T4

The number of columns has to be the same as the dimension of the vector to which the matrix is
applied.

Definition 16: Tranpose of a Matrix

a b a ¢
et (c d)’ then (b d)

14
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