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Introduction

@ Definition 1: Long Term Nonprocessor (LTNP)

Patient who will remain a long time in good health condition, even with a large viral load (cf. HIV).

0 Example 1: Genotype: Qualitative or Quantitative?

AA 0
SNP:{AB — |1,
BB 2

thus we might consider genotype either as a qualitative variable or quantitative variable.

When the variable are quantitative, we use regression, whereas for qualitative variables, we use an
analysis of variance.






LLinear Model

2.1 Simple Linear Regression

Y, =00+ /1 X +ei

Y =X3+e.
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Assumptions

(A1) &; are independent;
(As) €; are identically distributed,;

(A3) g; are i.i.d ~ N(0,0?) (homoscedasticity).

2.2 Generalized Linear Model

g(E(Y)) = X5
with g being
o Logistic regression: g(v) = log (l%v), for instance for boolean values,

« Poisson regression: g(v) = log(v), for instance for discrete variables.

2.2.1 Penalized Regression

When the number of variables is large, e.g, when the number of explanatory variable is above the number
of observations, if p >> n (p: the number of explanatory variable, n is the number of observations), we
cannot estimate the parameters. In order to estimate the parameters, we can use penalties (additional
terms).

Lasso regression, Elastic Net, etc.



2 Linear Model

2.2.2 Statistical Analysis Workflow

Step 1. Graphical representation;
Step 2. ...
Y =XB+¢,

is noted equivalently as

Y1 1 z11 o102 3 €1
o
Yo 1 zo1 T2 €2
= Bi| +
Y3 1 x31 x32 3 €3
2
Y4 1 74 o4 €4

2.3 Parameter Estimation

2.3.1 Simple Linear Regression

2.3.2 General Case

If X”X is invertible, the OLS estimator is:

f=(XTX)"'xXTy (2.1)

2.3.3 Ordinary Least Square Algorithm

We want to minimize the distance between X3 and Y:
minl|Y — X312
(See chapter 3).

=Xg = projt¥y
=VYv € w, vy = vproj”(y)
=Vi:
XY =X, X B where B is the estimator of 8
=X"y =X"TXj3
= (XX XY = (X ') Y(XTX)B
LB = (XTX)IXTY
This formula comes from the orthogonal projection of Y on the vector subspace defined by the
explaAnatory variables X
X3 is the closest point to Y in the subspace generated by X.

If H is the projection matrix of the subspace generated by X, XY is the projection on Y on this
subspace, that corresponds to XB.
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Figure 2.1 Orthogonal projection of Y on plan generated by the base described by X. a corresponds
to ||X5 — Y| and b corresponds to ||[Y — AX||?

Figure 2.2 Ordinary least squares and regression line with simulated data.

2.4 Coefficient of Determination: R?

@ Definition 2: R?

AV 2 _ 2112
IX6-Y1)° _ Y -XB|? _

0< R?2 = _ —q1_ Nz AP
B 1Y —Y 1] Y —Y1[? ~

proportion of variation of Y explained by the model.
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Let u a vector, we will use interchangeably the following notations: u and

o Remark 1: vector

Let u = and v =

Up, Un
6 Definition 3: Scalar Product (Dot Product)

U1

(u,v) = (ul,...,uv)

Un

= U1V1 + U2V2 + ... + UpVy

We may use (u,v) or u - v notations.

Dot product properties

Commutative (u,v) = (v,u)

Distributive ((u +v),w) = (u, w) + (v, w)
(u, v) = [lull x [Jv]| x cos(w, )

(a,a) = [lal|?
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Figure 3.1 Scalar product of two orthogonal vectors.

6 Definition 4: Norm

Length of the vector.

lull = v/{u, v)

6 Definition 5: Distance
dist(u,v) = ||u — v

@ Definition 6: Orthogonality

0 Remark 2

(dist(u,v))? = [lu—v|?,
and

(v —u,v—u)

(v—u,v—u) = <”U,”U> + <u7u> _2<uav>

= [[oll* + [|u®
= —2(u,v)
lu = ol* = Jlull® + [[o]* - 2(u, v)

lu+]* = [[ul® + [ + 2{u, v)
6 Proposition 1: Scalar product of orthogonal vectors

ulve (u,v)=0
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Indeed. ||u —v||? = ||u + v||?, as illustrated in Figure 3.1.

< — 2(u,v) = 2(u,v)

<d{u,vy =0
<(u,vy =0
O
Theorem 1: Pythagorean theorem
If u L v, then ||u+v||? = |Jul|® + ||v]* .
Definition 7: Orthogonal Projection
W
Let y=1] . | € R® and w a subspace of R™. ) can be written as the orthogonal projection of y on w:
Yn

Y =proj*(y) + z,

where

z € wt
proj*(y) € w

There is only one vector ) that ?
The scalar product between z and (?) is zero.

Property 1. proj*(y) is the closest vector to y that belongs to w.

Definition 8: Matrix

A matrix is an application, that is, a function that transform a thing into another, it is a linear
function.

0 Example 2: Matrix application

Let A be a matrix:

=2 )

~ [axy + bxo
~ \exy + das

10
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Figure 3.2 Coordinate systems

[~ Example 2 continued

Similarly,

Z1

a b ¢ d ary + bxo + cxr3 + dzy
T

e f g h 2] = ex1 + fxro + grs + hxy

. . T3 . .

i j k1 1x1 + jro + kxs + lxy
T4

The number of columns has to be the same as the dimension of the vector to which the matrix is
applied.

Definition 9: Tranpose of a Matrix

a b a ¢
et (c d)’ then (b d)

11
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