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1Introduction
π Definition 1: Long Term Nonprocessor (LTNP)

Patient who will remain a long time in good health condition, even with a large viral load (cf. HIV).

CLIPBOARD Example 1: Genotype: Qualitative or Quantitative?

SNP :


AA
AB
BB

→

0

1

2

 ,

thus we might consider genotype either as a qualitative variable or quantitative variable.

When the variable are quantitative, we use regression, whereas for qualitative variables, we use an
analysis of variance.
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2Linear Model
2.1 Simple Linear Regression

Yi = β0 + β1Xi + εi

Y = Xβ + ε.
Y1

Y2

...
Yn

 =


1 X1

1 X2

...
...

1 Xn


(
β0

β1

)
+


ε1
ε2
...εn


Assumptions

(A1) εi are independent;

(A2) εi are identically distributed;

(A3) εi are i.i.d ∼ N (0, σ2) (homoscedasticity).

2.2 Generalized Linear Model
g(E(Y )) = Xβ

with g being

• Logistic regression: g(v) = log
(

v
1−v

)
, for instance for boolean values,

• Poisson regression: g(v) = log(v), for instance for discrete variables.

2.2.1 Penalized Regression
When the number of variables is large, e.g, when the number of explanatory variable is above the number
of observations, if p >> n (p: the number of explanatory variable, n is the number of observations), we
cannot estimate the parameters. In order to estimate the parameters, we can use penalties (additional
terms).

Lasso regression, Elastic Net, etc.
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2 Linear Model

2.2.2 Statistical Analysis Workflow
Step 1. Graphical representation;

Step 2. ...

Y = Xβ + ε,

is noted equivalently as
y1
y2
y3
y4

 =


1 x11 x12

1 x21 x22

1 x31 x32

1 x41 x42


β0

β1

β2

+


ε1
ε2
ε3
ε4

 .

2.3 Parameter Estimation
2.3.1 Simple Linear Regression
2.3.2 General Case
If XT X is invertible, the OLS estimator is:

β̂ = (XT X)−1XT Y (2.1)

2.3.3 Ordinary Least Square Algorithm
We want to minimize the distance between Xβ and Y:

min‖Y − Xβ‖2

(See chapter 3).

⇒Xβ = proj(1,X)Y
⇒∀v ∈ w, vy = vprojw(y)

⇒∀i :
XiY = XiXβ̂ where β̂ is the estimator of β

⇒XT Y = XT Xβ̂

⇒(XT X)−1XT Y = (XT X)−1(XT X)β̂

⇒β̂ = (XT X)−1XT Y

This formula comes from the orthogonal projection of Y on the vector subspace defined by the
explanatory variables X

Xβ̂ is the closest point to Y in the subspace generated by X.
If H is the projection matrix of the subspace generated by X, XY is the projection on Y on this

subspace, that corresponds to Xβ̂.
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2 Linear Model

a X

Y

b

1

Figure 2.1 Orthogonal projection of Y on plan generated by the base described by X. a corresponds
to ‖Xβ̂ − Ȳ‖2 and b corresponds to ‖Y − β̂X‖2
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Figure 2.2 Ordinary least squares and regression line with simulated data.

2.4 Coefficient of Determination: R2

π Definition 2: R2

0 ≤ R2 =
‖Xβ̂ − Ȳ 1‖2

‖Y − Ȳ 1‖2
= 1− ‖Y − Xβ̂‖2

‖Y − Ȳ 1‖2
≤ 1

proportion of variation of Y explained by the model.
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3Elements of
Linear

Algebra
INFO Remark 1: vector

Let u a vector, we will use interchangeably the following notations: u and ~u

Let u =


u1

...
un

 and v =


v1
...
vn



π Definition 3: Scalar Product (Dot Product)

〈u, v〉 =
(
u1, . . . , uv

)
v1
...
vn


= u1v1 + u2v2 + . . .+ unvn

We may use 〈u, v〉 or u · v notations.

Dot product properties

Commutative 〈u, v〉 = 〈v, u〉

Distributive 〈(u+ v), w〉 = 〈u,w〉+ 〈v, w〉

〈u, v〉 = ‖u‖ × ‖v‖ × cos(û, v)

〈a, a〉 = ‖a‖2
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3 Elements of Linear Algebra

‖u− v‖

u

−u

v

Figure 3.1 Scalar product of two orthogonal vectors.

π Definition 4: Norm

Length of the vector.

‖u‖ =
√
〈u, v〉

‖u, v‖ > 0

π Definition 5: Distance

dist(u, v) = ‖u− v‖

π Definition 6: Orthogonality

INFO Remark 2

(dist(u, v))2 = ‖u− v‖2,

and

〈v − u, v − u〉

〈v − u, v − u〉 = 〈v, v〉+ 〈u, u〉 − 2〈u, v〉
= ‖v‖2 + ‖u‖2

= −2〈u, v〉

‖u− v‖2 = ‖u‖2 + ‖v‖2 − 2〈u, v〉
‖u+ v‖2 = ‖u‖2 + ‖v‖2 + 2〈u, v〉

π Proposition 1: Scalar product of orthogonal vectors

u ⊥ v ⇔ 〈u, v〉 = 0
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3 Elements of Linear Algebra

Indeed. ‖u− v‖2 = ‖u+ v‖2, as illustrated in Figure 3.1.

⇔− 2〈u, v〉 = 2〈u, v〉
⇔4〈u, v〉 = 0

⇔〈u, v〉 = 0

π Theorem 1: Pythagorean theorem

If u ⊥ v, then ‖u+ v‖2 = ‖u‖2 + ‖v‖2 .

π Definition 7: Orthogonal Projection

Let y =

y1
.

yn

 ∈ Rn and w a subspace of Rn. Y can be written as the orthogonal projection of y on w:

Y = projw(y) + z,

where{
z ∈ w⊥

projw(y) ∈ w

There is only one vector Y that ?
The scalar product between z and (?) is zero.

Property 1. projw(y) is the closest vector to y that belongs to w.

π Definition 8: Matrix

A matrix is an application, that is, a function that transform a thing into another, it is a linear
function.

CLIPBOARD Example 2: Matrix application

Let A be a matrix:

A =

(
a b

c d

)
and

x =

(
x1

x2

)
Then,

Ax =

(
a b

c d

)(
x1

x2

)

=

(
ax1 + bx2

cx1 + dx2

)

10



3 Elements of Linear Algebra

x x

y

x

y

z

Figure 3.2 Coordinate systems

CLIPBOARD Example 2 continued

Similarly,

a b c d

e f g h

i j k l



x1

x2

x3

x4

 =

ax1 + bx2 + cx3 + dx4

ex1 + fx2 + gx3 + hx4

ix1 + jx2 + kx3 + lx4



The number of columns has to be the same as the dimension of the vector to which the matrix is
applied.

π Definition 9: Tranpose of a Matrix

Let A =

(
a b

c d

)
, then AT =

(
a c

b d

)
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