\chapter{Generalized Linear Model} \begin{example} \begin{description} \item[Ex. 1 - Credit Carb Default] Let $Y_i$ be a boolean random variable following a Bernoulli distribution. \item[Ex. 2 - Horseshoe Crabs] Let $Y_i$, be the number of satellites males. $Y_i$ can be described as following a Poisson distribution. \end{description} \end{example} \begin{remark} A Poisson distribution can be viewed as an approximation of binomial distribution when $n$ is high and $p$ low. \end{remark} We will consider the following relation: \[ \EE(Y_i) = g^{-1} X_i \beta, \] equivalently: \[ g(\EE(Y_i)) = X_i \beta. \] \begin{itemize} \item $\beta$ is estimated by the maximum likelihood; \item $g$ is called the link function. \end{itemize} \begin{remark} In standard linear model, the OLS estimator is the estimator of maximum of likelihood. \end{remark} \section{Logistic Regression} \begin{align*} & \log(\frac{\Pi}{1 - \Pi}) & = \X \beta \\ \Leftrightarrow & e^{\ln \frac{\Pi}{1 - \Pi}} = e^{\X \beta} \\ \Leftrightarrow & \frac{\Pi}{1 - \Pi} = e^{\X \beta} \\ \Leftrightarrow & \Pi = (1 - \Pi) e^{\X\beta} \\ \Leftrightarrow & \Pi = e^{\X \beta} - \Pi e^{\X\beta} \\ \Leftrightarrow & \Pi + \Pi e^{\X\beta} = e^{\X \beta} \\ \Leftrightarrow & \Pi (1 - e^{\X\beta}) = e^{\X \beta} \\ \Leftrightarrow & \Pi = \frac{e^{\X\beta}}{1 + e^{\X \beta}} \end{align*} \section{Maximum Likelihood estimator} log-likelihood: the probability to observe what we observe. Estimate $\beta$ by $\hat{\beta}$ such that $\forall \beta \in \RR[p+1]$: \[ L_n (\hat{\beta}) \geq L_n (\beta) \] These estimators are consistent, but not necessarily unbiased. \section{Test for each single coordinate} \begin{example}[Payment Default] Let $Y_i$ be the default value for individual $i$. \[ \log (\frac{\Pi (X)}{1 - \Pi (X)}) = \beta_0 + \beta_1 \text{student} + \beta_2 \text{balance} + \beta_3 \text{income} \] In this example, only $\beta_0$ and $\beta_2$ are significantly different from 0. \end{example} \begin{remark} We do not add $\varepsilon_i$, because $\log(\frac{\Pi (X)}{1 - \Pi (X)})$ corresponds to the expectation. \end{remark} \subsection{Comparison of nested models} To test $H_0:\: \beta_0 = \ldots = \beta_p = 0$, we use the likelihood ratio test: \[ T_n = -2 \log (\mathcal{L}^{\texttt{null}}) + 2 \log (\mathcal{L}(\hat{\beta})) \underset{H_0}{\overunderset{\mathcal{L}}{n \to \infty}{\longrightarrow}} \chi^2(p). \] \begin{remark}[Family of Tests] \begin{itemize} \item Comparison of estimated values and values under the null hypothesis; \item Likelihood ratio test; \item Based on the slope on the derivative. \end{itemize} \end{remark} \section{Relative risk} $RR_i$ is the probably to have the disease, conditional to the predictor $X_{i1}$ over the probability of having the disease, conditional to the predictor $X_{i2}$. \[ RR(j) = \frac{\Prob(Y_{i_1} = 1 \: | \: X_{i_1})}{\Prob(Y_{i_2} = 1) \: | \: X_{i_2}} = \frac{\EE(Y_{i_1})}{\EE(Y_{i_2})}. \] $\pi(X_i)$ is the probability of having the disease, according to $X_i$. The relative risk can be written as\dots \section{Odds} Quantity providing a measure of the likelihood of a particular outcome: \[ odd = \frac{\pi(X_i)}{1 - \pi(X_i)} \] \[ odds = \exp(X_i \beta) \] odds is the ratio of people having the disease, if Y represent the disease, over the people not having the disease. \section{Odds Ratio} \begin{align*} OR(j) =\frac{odds(X_{i_1})}{odds(X_{i_2})} & = \frac{\frac{\pi{X_{i_1}}}{1 - \pi(X_{i_1})}}{\frac{\pi{X_{i_2}}}{1 - \pi(X_{i_2})}} \end{align*} The OR can be written as: \[ OR(j) = \exp(\beta_j) \] \begin{exercise} Show that $OR(j) = \exp(\beta_j)$. \end{exercise} \begin{align*} OR(j) & = \frac{odds(X_{i_1})}{odds(X_{i_2})} \\ & = \frac{\exp(X_{i_1} \beta)}{\exp(X_{i_2} \beta)} \\ \end{align*} \[ \log \left( \frac{\Prob(Y=1 \: |\: X_{i_1})}{1 - \Prob(Y=1 \: |\: X_{i_1})}\right) = \beta_0 + \beta_1 X_1^{(1)} + \beta_2 X_2^{(1)} + \ldots + \beta_p X_p^{(1)} \] Similarly \[ \log \left( \frac{\Prob(Y=1 \: |\: X_{i_2})}{1 - \Prob(Y=1 \: |\: X_{i_2})}\right) = \beta_0 + \beta_1 X_1^{(2)} + \beta_2 X_2^{(2)} + \ldots + \beta_p X_p^{(2)} \] We substract both equations: \begin{align*} &\log \left( \frac{\Prob(Y=1 \: |\: X_{i_1})}{1 - \Prob(Y=1 \: |\: X_{i_1})} \right) - \log \left(\frac{\Prob(Y=1 \: |\: X_{i_2})}{1 - \Prob(Y=1 \: |\: X_{i_2})}\right) \\ & = \beta_0 + \beta_1 X_1^{(1)} + \beta_2 X_2^{(1)} + \ldots + \beta_p X_p^{(1)} - \beta_0 + \beta_1 X_1^{(2)} + \beta_2 X_2^{(2)} + \ldots + \beta_p X_p^{(2)} \\ & = \log OR(j) \\ & = \cancel{(\beta_0 - \beta_0)} + \beta_1 \cancel{(X_1^{(1)} - X_1^{(2)})} + \beta_2 \cancel{(X_2^{(1)} - X_2^{(2)})} + \ldots + \beta_j \cancelto{1}{(X_j^{(1)} - X_j^{(2)})} + \ldots + \beta_p \cancel{(X_p^{(1)} - X_p^{(2)})} \\ &\Leftrightarrow \log (OR_j) = \beta_j \\ &\Leftrightarrow OR(j) = \exp(\beta_j) \end{align*} OR is not equal to RR, except in the particular case of probability (?) If OR is significantly different from 1, the $\exp(\beta_j)$ is significantly different from 1, thus $\beta_j$ is significantly different from 0. If we have more than two classes, we do not know what means $X_{i_1} - X_{i_2} = 0$. We will have to take a reference class, and compare successively each class with the reference class. $\hat{\pi}(X_{+}) = \hat{\Prob(X=1 \: | X_{i1})}$ for a new individual. \section{Poisson model} Let $Y_{i} \sim \mathcal{P}(\lambda_{i})$, corresponding to a counting. \begin{align*} \EE(Y_{i}) & = g^{-1}(X_{i} \beta) \\ \Leftrightarrow g(\EE(Y_{i})) = X_{i} \beta \end{align*} where $g(x) = \ln(x)$, and $g^{-1}(x) = e^{x}$. \[ \lambda_{i} = \EE(Y_{i}) = \Var(Y_{i}) \]