65 lines
2.2 KiB
TeX
65 lines
2.2 KiB
TeX
|
\chapter{Section alignment}
|
||
|
|
||
|
\section{Needleman - Wunsch algorithm}
|
||
|
|
||
|
\begin{algorithm}
|
||
|
\caption{Needleman-Wunsch Algorithm}
|
||
|
\begin{algorithmic}[1]
|
||
|
\Procedure{FillMatrix}{$S_{1}$: Array($m$), $S_{2}$: Array($n$)}
|
||
|
\Comment{$sub(a, b)$ is the substitution score, $del(a)$ and $ins(a)$ are the deletion and insertion penalty, in regard with the reference $S_{1}$ sequence}
|
||
|
\State $M = $ Array($m+1$, $n+1$)
|
||
|
\Comment{Initialize the matrix first column and first row}
|
||
|
\State $P = $ Array($m$, $n$) \Comment{Store the direction of the cell we chose to build the next cell up on.}
|
||
|
\For {($i = 0$; $i < m+1$; $i++$)}
|
||
|
\State $M[i][0] = i * del(S_{1}[i])$
|
||
|
\EndFor
|
||
|
\For {($j = 0$; $j < n+1$; $j++$)}
|
||
|
\State $M[0][j] = j * ins(S_{2}[j])$
|
||
|
\EndFor
|
||
|
\Comment{Fill the remaining matrix}
|
||
|
\For {($i = 1$; $i < m+1$; $i++$)}
|
||
|
\For {($j = 1$; $j < n+1$; $j++$)}
|
||
|
\State $delete = M[i-1][j] + del(S_{1}[i-1])$
|
||
|
\State $insert = M[i][j-1] + ins(S_{2}[j-1])$
|
||
|
\State $substitute = M[i-1][j-1] + sub(S_{1}[i-1], S_{2}[j-1])$
|
||
|
\State $choice = \max \{delete, insert, substitute\}$
|
||
|
\If {$substitute = choice$}
|
||
|
\State $P[i-1][j-1] = '\nwarrow'$
|
||
|
\ElsIf {$insertion = choice$}
|
||
|
\State $P[i-1][j-1] = '\uparrow'$
|
||
|
\Else
|
||
|
\State $P[i-1][j-1] = '\leftarrow'$
|
||
|
\EndIf
|
||
|
\State $M[i][j] = choice$
|
||
|
\EndFor
|
||
|
\EndFor
|
||
|
\EndProcedure
|
||
|
\Procedure{ShowAlignment}{$S_{1}$: Array($m$), $S_{2}$: Array($n$)}
|
||
|
\State $extend_{1} = ''$
|
||
|
\State $extend_{2} = ''$
|
||
|
\State $i = m$
|
||
|
\State $j = n$
|
||
|
\While{$i > 0$ and $j > 0$}
|
||
|
\If {$P[i-1][j-1] = '\nwarrow'$}
|
||
|
\State $extend_{1} = S_{1}[i-1] \circ extend_{1}$
|
||
|
\State $extend_{2} = S_{2}[j-1] \circ extend_{2}$
|
||
|
\State $i--$
|
||
|
\State $j--$
|
||
|
\ElsIf {$P[i-1][j-1] = '\uparrow'$}
|
||
|
\State $extend_{1} = S_{1}[i-1] \circ extend_{1}$
|
||
|
\State $extend_{2} =\quad '-' \circ extend_{2}$
|
||
|
\State $i--$
|
||
|
\Else
|
||
|
\State $extend_{1} =\quad '-' \circ extend_{1}$
|
||
|
\State $extend_{2} = S_{2}[j-1] \circ extend_{2}$
|
||
|
\State $j--$
|
||
|
\EndIf
|
||
|
\EndWhile
|
||
|
\State \Call{print}{$extend_{1}$}
|
||
|
\State \Call{print}{$extend_{2}$}
|
||
|
\EndProcedure
|
||
|
\State \Call{FillMatrix}{$S_{1}$, $S_{2}$}
|
||
|
\State \Call ShowAlignment($S_{1}$, $S_{2}$)
|
||
|
\end{algorithmic}
|
||
|
\end{algorithm}
|