fix: Definition on automata
This commit is contained in:
parent
80f4669d23
commit
020c1b7497
|
@ -279,11 +279,11 @@ An automaton is a tuple $\langle S, s_{0}, T, \Sigma,f\rangle$
|
||||||
\paragraph{Example} Given the language $L$ on the alphabet $\Sigma = \{A, C, T\}$, $L = \{A^{*}, CTT, CA^{*}\}$
|
\paragraph{Example} Given the language $L$ on the alphabet $\Sigma = \{A, C, T\}$, $L = \{A^{*}, CTT, CA^{*}\}$
|
||||||
|
|
||||||
\begin{definition}[Deterministic automaton]
|
\begin{definition}[Deterministic automaton]
|
||||||
An automaton is deterministic, if for each couple $(p, a) \in S \times \Sigma$ it exists at most a state $q$ such as $f(p, q) = q$
|
An automaton is deterministic, if for each couple $(p, a) \in S \times \Sigma$ it exists at most a state $q$ such as $f(p, a) = q$
|
||||||
\end{definition}
|
\end{definition}
|
||||||
|
|
||||||
\begin{definition}[Complete automaton]
|
\begin{definition}[Complete automaton]
|
||||||
An automaton is complete, if for each couple $(p, a) \in S \times \Sigma$ it exists at least a state $q$ such as $f(p, q) = q$.
|
An automaton is complete, if for each couple $(p, a) \in S \times \Sigma$ it exists at least a state $q$ such as $f(p, a) = q$.
|
||||||
\end{definition}
|
\end{definition}
|
||||||
|
|
||||||
\begin{algorithm}
|
\begin{algorithm}
|
||||||
|
@ -439,4 +439,4 @@ each state to the initial state whenever we encounter an unknown letter.
|
||||||
\EndIf
|
\EndIf
|
||||||
\EndFunction
|
\EndFunction
|
||||||
\end{algorithmic}
|
\end{algorithmic}
|
||||||
\end{algorithm}
|
\end{algorithm}
|
||||||
|
|
Loading…
Reference in New Issue