Compare commits

...

2 Commits

Author SHA1 Message Date
Samuel Ortion e64a1d711a Add variation on Needleman - Wunsch algorithm 2024-03-25 12:04:13 +01:00
Samuel Ortion e945027027 Add base needleman 2024-03-25 10:38:20 +01:00
10 changed files with 422 additions and 284 deletions

View File

@ -1,5 +1,5 @@
sub createFolderStructure{ sub createFolderStructure{
system("bash ./createFolderStructure.sh"); system("bash ./folder-structure.sh");
} }
createFolderStructure(); createFolderStructure();

View File

@ -11,7 +11,7 @@
} }
} }
\includechapters{part1}{3} \includechapters{part1}{4}
\includechapters{part2}{2} \includechapters{part2}{4}
% \includechapters{part3}{1} % \includechapters{part3}{1}

View File

@ -0,0 +1,116 @@
\chapter{Longest common subsequence}
Let $S_{1} = \text{ATCTGAT}$ and $S_{2} = \text{TGCATA}$.
In this case the longest common subsequence of $S_{1}$ and $S_{2}$ is $TCTA$.
\begin{algorithm}
\caption{Construct a longest common subsequence matrix}
\begin{algorithmic}[1]
\Function{LCSQ\_Matrix}{$S_{1}$: Array($n$), $S_{2}$: Array($m$)}
\State $M \gets $ Array($m+1$, $n+1$)
\For{($i = 0$; $i < n+1$; $i++$)}
\For{$j = 0$; $j < m+1$; $j++$}
\If {$i = 0$ or $j = 0$}
\State $M[i][j] = 0$
\Else
\If {$S_{1}[i] = S_{2}[j]$}
\State $match = M[i-1][j-1] + 1$
\Else
\State $match = M[i-1][j-1]$
\EndIf
\State $gap_{1} = M[i-1][j]$
\State $gap_{2} = M[i][j-1]$
\State $M[i][j] = \max \{ match, gap_{1}, gap_{2}\}$
\EndIf
\EndFor
\EndFor
\State \Return $M$
\EndFunction
\end{algorithmic}
\end{algorithm}
\begin{algorithm}
\caption{Construct a longest common subsequence matrix keeping the path in memory}
\begin{algorithmic}[1]
\Function{LCSQ\_Matrix\_Path}{$S_{1}$: Array($n$), $S_{2}$: Array($m$)}
\State $M \gets $ Array($m+1$, $n+1$)
\State $P \gets $ Array($m+1$, $n+1$)
\For {($i = 0$; $i < n+1$, $i++$)}
\State $M[i][0] \gets 0$
\EndFor
\For {($j = 0$; $j < m+1$; $j+$)}
\State $M[0][j] \gets 0$
\EndFor
\For{($i = 1$; $i < n+1$; $i++$)}
\For{($j = 1$; $j < m+1$; $j++$)}
\If {$i = 1$ or $j = 0$}
\State $M[i][j] = 0$
\Else
\If {$S_{1}[i-1] = S_{2}[j-1]$}
\State $M[i][j] \gets M[i-1][j-1] + 1$
\State $P[i][j] \gets '\nwarrow'$
\ElsIf {$M[i][j-1] \geq M[i-1][j]$}
\State $M[i][j] \gets M[i][j-1]$
\State $P[i][j] \gets '\leftarrow'$
\Else
\State $M[i][j] \gets M[i-1][j]$
\State $P[i][j] \gets '\downarrow'$
\EndIf
\EndFor
\EndFor
\State \Return $M, P$
\EndFunction
\end{algorithmic}
\end{algorithm}
\begin{algorithm}
\caption{Backtrack the longest common subsequence}
\begin{algorithmic}[1]
\Function{LCSQ}{$S_{1}$: Array($n$), $S_{2}$: Array($m$)}
\State $M, P \gets $ \Call{LCSQ\_Matrix}{$S_{1}$, $S_{2}$}
\State $L \gets Array(M[n][m])$
\State $k \gets 0$
\State $i \gets n$
\State $j \gets m$
\While{$i > 0$ and $j > 0$}
\If {$P[i][j] = '\nwarrow' $}
\State $L[k] \gets S_{1}[i]$
\State $i--$
\State $j--$
\State $k++$
\ElsIf {$P[i][j] = '\leftarrow'$}
\State $j--$
\Else
\State $i--$
\EndIf
\EndWhile
\State \Return $L$
\EndFunction
\end{algorithmic}
\end{algorithm}
\iffalse
\begin{algorithm}
\caption{Recursive reconstruction of the longest common subsequence}
\begin{algorithmic}[1]
\Procedure{LCSQ}{$S_{1}$: Array($n$), $S_{2}$: Array($m$)}
\State $M, P \gets $ \Call{LCSQ\_Matrix}{$S_{1}$, $S_{2}$}
\State $i \gets n$
\State $j \gets m$
\State \Call{Aux}{$P$, $S_{1}$, $i$, $j$}
\EndProcedure
\Procedure{Aux}{$P$: Array($n+1$, $m+1$), $S_{1}$: Array($n$), $i$, $j$}
\If {$P[i][j] = '\nwarrow' $}
\State $l \gets S_{1}[i]$
\State \Call{Aux}{$P$, $S_{1}$, $i-1$, $j-1$}
\State \texttt{print}($l$)
\ElsIf {$P[i][j] = '\leftarrow'$}
\State \Call{Aux}{$P$, $S_{1}$, $i$, $j-1$}
\Else
\State \Call{Aux}{$P$, $S_{1}$, $i-1$, $j$}
\EndIf
\EndProcedure
\end{algorithmic}
\end{algorithm}
\fi

View File

@ -55,6 +55,7 @@ In this case the longest common subsequence of $S_{1}$ and $S_{2}$ is $TCTA$.
\State $M[i][j] \gets M[i-1][j]$ \State $M[i][j] \gets M[i-1][j]$
\State $P[i][j] \gets '\downarrow'$ \State $P[i][j] \gets '\downarrow'$
\EndIf \EndIf
\EndIf
\EndFor \EndFor
\EndFor \EndFor
\State \Return $M, P$ \State \Return $M, P$
@ -88,6 +89,7 @@ In this case the longest common subsequence of $S_{1}$ and $S_{2}$ is $TCTA$.
\end{algorithmic} \end{algorithmic}
\end{algorithm} \end{algorithm}
\iffalse
\begin{algorithm} \begin{algorithm}
\caption{Recursive reconstruction of the longest common subsequence} \caption{Recursive reconstruction of the longest common subsequence}
\begin{algorithmic}[1] \begin{algorithmic}[1]
@ -111,3 +113,4 @@ In this case the longest common subsequence of $S_{1}$ and $S_{2}$ is $TCTA$.
\EndProcedure \EndProcedure
\end{algorithmic} \end{algorithmic}
\end{algorithm} \end{algorithm}
\fi

View File

@ -22,3 +22,16 @@ Example:
\item $del(a) = 1$ \item $del(a) = 1$
\item $ins(a) = 1$ \item $ins(a) = 1$
\end{itemize} \end{itemize}
Let $X = x_{0} x_{1} \ldots x_{m-1}$, $Y = y_{0} y_{1} \ldots y_{n-1} $
An alignment is noted as $z = \begin{pmatrix} \bar{x}_{0} \\ \bar{y}_{0} \end{pmatrix} \ldots \begin{pmatrix} \bar{x}_{p-1} \\ \bar{y}_{p-1} \end{pmatrix}$ of size $p$. $n \leq p \leq n + m$
$\bar{x}_{i} = x_{j}$ or $\bar{x}_{i} = \varepsilon$ for $0 \leq i \leq p-1$ and $0 \leq j \leq m - 1$
$\bar{y}_{i} = y_{j}$ or $\bar{y}_{i} = \varepsilon$ for $0 \leq i \leq p-1$ and $0 \leq j \leq n - 1$
$X' = \bar{x}_{0} \bar{x}_{1} \ldots \bar{x}_{i} \ldots \bar{x}_{p-1}$
$Y' = \bar{y}_{0} \bar{y}_{1} \ldots \bar{y}_{i} \ldots \bar{y}_{p-1}$
for $0 \leq i \leq p-1$, $\nexists i$, such that $\bar{x}_{i} = \bar{y}_{i} = \varepsilon$

View File

@ -0,0 +1,145 @@
\chapter{Section alignment}
\section{Needleman - Wunsch algorithm}
\begin{algorithm}
\caption{Needleman-Wunsch Algorithm}
\begin{algorithmic}[1]
\Procedure{FillMatrix}{$S_{1}$: Array($m$), $S_{2}$: Array($n$)}
\Comment{$sub(a, b)$ is the substitution score, $del(a)$ and $ins(a)$ are the deletion and insertion penalty, in regard with the reference $S_{1}$ sequence}
\State $M = $ Array($m+1$, $n+1$)
\Comment{Initialize the matrix first column and first row}
\State $P = $ Array($m$, $n$) \Comment{Store the direction of the cell we chose to build the next cell up on.}
\State $M[0][0] = 0$
\For {($i = 1$; $i < m+1$; $i++$)}
\State $M[i][0] = M[i-1][0] + gap\_penalty$
\EndFor
\For {($j = 1$; $j < n+1$; $j++$)}
\State $M[0][j] = M[0][j-1] + gap\_penalty$
\EndFor
\Comment{Fill the remaining matrix}
\For {($i = 1$; $i < m+1$; $i++$)}
\For {($j = 1$; $j < n+1$; $j++$)}
\State $delete = M[i-1][j] + gap\_penalty$
\State $insert = M[i][j-1] + gap\_penalty$
\State $substitute = M[i-1][j-1] + sub(S_{1}[i-1], S_{2}[j-1])$
\State $choice = \min \{delete, insert, substitute\}$
\If {$substitute = choice$}
\State $P[i-1][j-1] = '\nwarrow'$
\ElsIf {$deletion = choice$}
\State $P[i-1][j-1] = '\leftarrow'$
\Else
\State $P[i-1][j-1] = '\uparrow'$
\EndIf
\State $M[i][j] = choice$
\EndFor
\EndFor
\EndProcedure
\end{algorithmic}
\end{algorithm}
\begin{algorithm}
\caption{Needleman-Wunsch Algorithm (Backtrack)}
\begin{algorithmic}[1]
\Procedure{ShowAlignment}{$S_{1}$: Array($m$), $S_{2}$: Array($n$)}
\State $extend_{1} = ''$
\State $extend_{2} = ''$
\State $i = m$
\State $j = n$
\While{$i > 0$ and $j > 0$}
\If {$P[i-1][j-1] = '\nwarrow'$}
\State $extend_{1} = S_{1}[i-1] \circ extend_{1}$
\State $extend_{2} = S_{2}[j-1] \circ extend_{2}$
\State $i--$
\State $j--$
\ElsIf {$P[i-1][j-1] = '\uparrow'$}
\State $extend_{1} = S_{1}[i-1] \circ extend_{1}$
\State $extend_{2} = '-' \circ extend_{2}$
\State $i--$
\Else
\State $extend_{1} = '-' \circ extend_{1}$
\State $extend_{2} = S_{2}[j-1] \circ extend_{2}$
\State $j--$
\EndIf
\EndWhile
\While{$i > 0$}
\State $extend_{1} = S_{1}[i-1] \circ extend_{1}$
\State $extend_{2} = '-' \circ extend_{2}$
\State $i--$
\State \Call{Insert}{0, $alignment$,$tuple$}
\EndWhile
\While{$j > 0$}
\State $extend_{1} = '-' \circ extend_{1}$
\State $extend_{2} = S_{2}[j-1] \circ extend_{2}$
\State $j--$
\EndWhile
\State \Call{print}{$extend_{1}$}
\State \Call{print}{$extend_{2}$}
\EndProcedure
\State \Call{FillMatrix}{$S_{1}$, $S_{2}$}
\State \Call{ShowAlignment}{$S_{1}$, $S_{2}$}
\end{algorithmic}
\end{algorithm}
\begin{algorithm}
\caption{Needleman-Wunsch Algorithm (Backtrack) }
\begin{algorithmic}[1]
\Procedure{FillMatrix}{$S_{1}$: Array($m$), $S_{2}$: Array($n$)}
\State $M = $ Array($m+1$, $n+1$)
\State $P = $ Array($m$, $n$)
\Comment{Store the direction of the cell we chose to build the next cell up on.}
\State $M[0][0] = 0$
\For {($i = 1$; $i < m+1$; $i++$)}
\State $M[i][0] = M[i-1][0] + gap\_penalty$
\EndFor
\For {($j = 1$; $j < n+1$; $j++$)}
\State $M[0][j] = M[0][j-1] + gap\_penalty$
\EndFor
\For {($i = 1$; $i < m+1$; $i++$)}
\For {($j = 1$; $j < n+1$; $j++$)}
\State $delete = M[i-1][j] + gap\_penalty$
\State $insert = M[i][j-1] + gap\_penalty$
\State $substitute = M[i-1][j-1] + sub(S_{1}[i-1], S_{2}[j-1])$
\State $M[i][j] = \min \{substitute, insert, delete\}$
\EndFor
\EndFor
\EndProcedure
\end{algorithmic}
\end{algorithm}
\begin{algorithm}
\caption{Needleman-Wunsch Algorithm, using proper notation (Backtrack)}
\begin{algorithmic}[1]
\Procedure{BacktrackAlignment}{$S_{1}$: Array($m$), $S_{2}$: Array($n$)}
\State $alignment = LinkedList$
\State $i = m$
\State $j = n$
\While{$i > 0$ and $j > 0$}
\If {$M[i-1][j-1] = M[i][j] - sub(S_{1}[i-1], S_{2}[j-1])$}
\State $tuple = \begin{pmatrix} S_{1}[i-1] \\ S_{2}[j-1] \end{pmatrix}$
\State $i--$
\State $j--$
\ElsIf {$M[i-1][j-1] = M[i][j-1] - gap\_penalty$}
\State $tuple = \begin{pmatrix} S_{1}[i-1] \\ \varepsilon \end{pmatrix}$
\State $i--$
\Else
\State $tuple = \begin{pmatrix} \varepsilon \\ S_{2}[j-1] \end{pmatrix}$
\State $j--$
\EndIf
\State \Call{Insert}{0, $alignment$,$tuple$}
\EndWhile
\While{$i > 0$}
\State $tuple = \begin{pmatrix} S_{1}[i-1] \\ \varepsilon \end{pmatrix}$
\State $i--$
\State \Call{Insert}{0, $alignment$,$tuple$}
\EndWhile
\While{$j > 0$}
\State $tuple = \begin{pmatrix} \varepsilon \\ S_{2}[j-1] \end{pmatrix}$
\State $j--$
\State \Call{Insert}{0, $alignment$,$tuple$}
\EndWhile
\EndProcedure
\State \Call{FillMatrix}{$S_{1}$, $S_{2}$}
\State \Call{BacktrackAlignment}{$S_{1}$, $S_{2}$}
\end{algorithmic}
\end{algorithm}

View File

@ -1,176 +0,0 @@
function lcsq_matrix(seq1, seq2)
local gap_penalty = 0
local match_score = 1
local n1 = string.len(seq1)
local n2 = string.len(seq2)
-- Create a n1 x n2 matrix
local matrix = {}
for i=0,n1 do
matrix[i] = {}
for j=0,n2 do
matrix[i][j] = 0
end
end
-- Fill the rest of the matrix
local match, delete, insert
for i=1,n1 do
for j=1,n2 do
if string.sub(seq1, i, i) == string.sub(seq2, j, j) then
match = matrix[i-1][j-1] + match_score
else
match = matrix[i-1][j-1]
end
gap1 = matrix[i-1][j] + gap_penalty
gap2 = matrix[i][j-1] + gap_penalty
matrix[i][j] = math.max(match, gap1, gap2)
end
end
return matrix
end
local function has_value (tab, val)
for index, value in ipairs(tab) do
if value == val then
return true
end
end
return false
end
function repr_matrix(matrix)
repr = ""
for i=1,#matrix do
for j=1,#matrix do
repr = repr .. matrix[i][j] .. " "
end
repr = repr .. "\n"
end
return repr
end
function draw_lcsq_matrix_graph(seq1, seq2)
local matrix = lcsq_matrix(seq1, seq2)
local tikz_code = ""
function coordinate(i, j)
return i .. "_" .. j
end
local steps = {
{-1, 0},
{-1, -1},
{0, -1}
}
local n1 = string.len(seq1)
local n2 = string.len(seq2)
local path = {}
local i = n1
local j = n2
while i >= 0 and j >= 0 do
path[#path+1] = coordinate(i, j)
local min = matrix[i][j]
local min_step = steps[1]
for index, step in ipairs(steps) do
local k = i + step[1]
local l = j + step[2]
if k >= 0 and l >= 0 and matrix[k][l] <= min then
min_step = step
min = matrix[k][l]
end
end
i = i + min_step[1]
j = j + min_step[2]
print(i, j)
end
-- Draw the matrix as tikz node with matrix value
for i=0,n1 do
for j=0,n2 do
local options = ""
if has_value(path, coordinate(i, j)) then
options = "[fill=gray, draw, minimum size=1]"
end
tikz_code = tikz_code .. "\\node" .. options .. " (" .. coordinate(i, j) .. ") at (" .. i .. ", " .. -j .. ")" .. " {" .. matrix[i][j] .. "};"
end
end
-- Add nucleotide labels
for i=1,n1 do
local nt = string.sub(seq1, i, i)
tikz_code = tikz_code .. "\\node at (".. i .. "," .. 1 .. ")" .. "{$" .. nt .."$};"
end
for i=1,n2 do
local nt = string.sub(seq2, i, i)
tikz_code = tikz_code .. "\\node at (" .. -1 .. ", " .. -i .. ")" .. "{$ ".. nt .."$};"
end
-- For seq2
for i=0,n1 do
for j=0,n2 do
local min = math.huge
for index, step in ipairs(steps) do
local k = i + step[1]
local l = j + step[2]
if k >= 0 and l >= 0 and matrix[k][l] < min then
min = matrix[k][l]
end
end
local highlighted = false
for index, step in ipairs(steps) do
local k = i + step[1]
local l = j + step[2]
if k >= 0 and l >= 0 and matrix[k][l] == min then
tikz_code = tikz_code .. "\\draw[->] (" .. coordinate(i, j) .. ")" .. " -- " .. "(" .. coordinate (k, l) .. ");"
end
end
end
end
return tikz_code
end
function draw_lcsq_matrix(seq1, seq2)
-- print(string.format(" Path: %s -> %s", seq1, seq2))
local matrix = lcsq_matrix(seq1, seq2)
local n1 = string.len(seq1)
local n2 = string.len(seq2)
-- Draw the matrix as tikz nodes
for i=0,n1-1 do
for j=0,n2-1 do
print(string.format("\\node[draw, minimum width=1cm, minimum height=1cm] at (%d, -%d) {};", i, j, matrix[i][j]))
end
end
-- Draw the sequence labels
for i=1,n1 do
print(string.format("\\node at (%d, -%d) {%s};", i-1, -1, string.sub(seq1, i, i)))
end
for i=1,n2 do
print(string.format("\\node at (%d, -%d) {%s};", -1, i-1, string.sub(seq2, i, i)))
end
-- Add a path from the bottom right corner to the top left corner, following the minimum of the three possible moves at each step
local i, j, value, previous_value
i = n1-1
j = n2-1
print(string.format("\\draw[-,line width=2, gray] (%d, -%d) --", i, j))
while i > 0 and j > 0 do
value = math.min(matrix[i-1][j-1], table[i-1][j], table[i][j-1])
if value == matrix[i-1][j-1] then
i = i - 1
j = j - 1
elseif value == matrix[i-1][j] then
i = i - 1
else
j = j - 1
end
print(string.format(" (%d, -%d) -- ", i, j))
end
print(string.format("(0, 0) -- (-1, 1);", i, j))
end
function main()
local seq1 = "ATCTGAT"
local seq2 = "TGCATA"
local matrix = lcsq_matrix(seq1, seq2)
print(repr_matrix(matrix))
end
main()

BIN
main.pdf (Stored with Git LFS)

Binary file not shown.

BIN
tmp.pdf (Stored with Git LFS)

Binary file not shown.

39
tmp.tex
View File

@ -11,6 +11,43 @@
\input{definitions.tex} \input{definitions.tex}
\begin{document} \begin{document}
\begin{algorithm}
\caption{Construct a longest common subsequence matrix keeping the path in memory}
\begin{algorithmic}[1]
\Function{LCSQ\_Matrix\_Path}{$S_{1}$: Array($n$), $S_{2}$: Array($m$)}
\State $M \gets $ Array($m+1$, $n+1$)
\State $P \gets $ Array($m+1$, $n+1$)
\For {($i = 0$; $i < n+1$, $i++$)}
\State $M[i][0] \gets 0$
\EndFor
\For {($j = 0$; $j < m+1$; $j+$)}
\State $M[0][j] \gets 0$
\EndFor
\For{($i = 1$; $i < n+1$; $i++$)}
\For{($j = 1$; $j < m+1$; $j++$)}
\If {$i = 1$ or $j = 0$}
\State $M[i][j] = 0$
\Else
\If {$S_{1}[i-1] = S_{2}[j-1]$}
\State $M[i][j] \gets M[i-1][j-1] + 1$
\State $P[i][j] \gets '\nwarrow'$
\ElsIf {$M[i][j-1] \geq M[i-1][j]$}
\State $M[i][j] \gets M[i][j-1]$
\State $P[i][j] \gets '\leftarrow'$
\Else
\State $M[i][j] \gets M[i-1][j]$
\State $P[i][j] \gets '\downarrow'$
\EndIf
\EndIf
\EndFor
\EndFor
\State \Return $M, P$
\EndFunction
\end{algorithmic}
\end{algorithm}
\iffalse
\begin{algorithm} \begin{algorithm}
\caption{Backtrack the longest common subsequence} \caption{Backtrack the longest common subsequence}
\begin{algorithmic}[1] \begin{algorithmic}[1]
@ -60,7 +97,7 @@
\EndProcedure \EndProcedure
\end{algorithmic} \end{algorithmic}
\end{algorithm} \end{algorithm}
\fi
\end{document} \end{document}
\end{document} \end{document}