\part{Sequence alignment} \section{Simililarity between sequences} A function $d$ is a distance between two sequences $x$ and $y$ in an alphabet $\Sigma$ if \begin{itemize} \item $x, y \in \Sigma^{*}, d(x, x) = 0$ \item $\forall x, y \in \Sigma^{*}$ $d(x,y) = d(y,x)$ \item $\forall x, y, z \in \Sigma^{*}$ $d(x, z) \leq d(x, y) + d(x, z)$ \end{itemize} Here we are interested by the distance that is able to represent the transformation of $x$ to $y$ using three types of basic operations: \begin{itemize} \item Substition \item Insertion \item Deletion \end{itemize} Example: \begin{itemize} \item $sub(a, b) = \begin{cases} 0 & \text{if} a = b \\ 1 &\text{otherwise} \end{cases}$. \item $del(a) = 1$ \item $ins(a) = 1$ \end{itemize}