\part{Sequence alignment} \section{Simililarity between sequences} A function $d$ is a distance between two sequences $x$ and $y$ in an alphabet $\Sigma$ if \begin{itemize} \item $x, y \in \Sigma^{*}, d(x, x) = 0$ \item $\forall x, y \in \Sigma^{*}$ $d(x,y) = d(y,x)$ \item $\forall x, y, z \in \Sigma^{*}$ $d(x, z) \leq d(x, y) + d(x, z)$ \end{itemize} Here we are interested by the distance that is able to represent the transformation of $x$ to $y$ using three types of basic operations: \begin{itemize} \item Substition \item Insertion \item Deletion \end{itemize} Example: \begin{itemize} \item $sub(a, b) = \begin{cases} 0 & \text{if} a = b \\ 1 &\text{otherwise} \end{cases}$. \item $del(a) = 1$ \item $ins(a) = 1$ \end{itemize} Let $X = x_{0} x_{1} \ldots x_{m-1}$, $Y = y_{0} y_{1} \ldots y_{n-1} $ An alignment is noted as $z = \begin{pmatrix} \bar{x}_{0} \\ \bar{y}_{0} \end{pmatrix} \ldots \begin{pmatrix} \bar{x}_{p-1} \\ \bar{y}_{p-1} \end{pmatrix}$ of size $p$. $n \leq p \leq n + m$ $\bar{x}_{i} = x_{j}$ or $\bar{x}_{i} = \varepsilon$ for $0 \leq i \leq p-1$ and $0 \leq j \leq m - 1$ $\bar{y}_{i} = y_{j}$ or $\bar{y}_{i} = \varepsilon$ for $0 \leq i \leq p-1$ and $0 \leq j \leq n - 1$ $X' = \bar{x}_{0} \bar{x}_{1} \ldots \bar{x}_{i} \ldots \bar{x}_{p-1}$ $Y' = \bar{y}_{0} \bar{y}_{1} \ldots \bar{y}_{i} \ldots \bar{y}_{p-1}$ for $0 \leq i \leq p-1$, $\nexists i$, such that $\bar{x}_{i} = \bar{y}_{i} = \varepsilon$