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1.2.1 Mathematical induction

Exercise 4. (p. 18)

Let F), be the n-th Fibonacci number, defined by the recursion relation

Fy=1,
=1,
F,=F, 1+F, 2 n2>2.

Let ¢ = 1+T‘/5 be the golden ratio.
We have

Fp <ot (1.1)

vn € N.

Prove that, in addition to Eq. 1.1, F,, > ¢" 2.
My Answer:

Let P(n) be the assertion that F, > ¢" 2.

We proceed by recursion on n.

1+ ¢ = ¢? (1.2)

Initiation Forn =0: ¢ 2 = ¢~ 2 = # As ¢?> > 1 . # <1, so P(0) is true.
Forn=1:¢'2=¢"1=1 As¢p>1, % <1, so P(1) is true.
Heredity Let P(n) and P(n — 1) be true. We have to prove P(n+1).

1
L
o
P(n)AP(n—1) & Fy > ¢" 2 AF,_q > ¢" 172

& Fyt Foq >¢" 249"

& P+ Foy > 6" 31+ 9)

& Fp 4 Fp_1 > ¢" 3¢? using Eq. 1.2

S F,+F,1>¢" !

s Fn—|—1 > ¢n+172

< P(n+1)

Conclusion P(0) and P(1) are true. P(n) A P(n — 1) true implies P(n + 1) true. So
P(n) is true for all n € N.
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Exercise 5. (p. 19)

A prime number is an integer > 1 that has no exact divisors other than 1 and itself.
Using this definition and mathematical induction, prove that every integer > 1 can be
written as a product of prime numbers or is a prime itself.

My Answer: Let P(n) be the assertion that n can be written as a product of
prime numbers or is a prime.

Proof. Let N > 1 be the smallest integer such that P(N) is false.
As VN’ < N, N’ > 1, P(N’) is true. We have either of the following assertions:

e N is a prime number;

e there exists m and n below N such that, m x n = N. As m and n are below N,
they satisfies P, so they are either primes or a product of primes. So mn = N is
also a product of primes.

We have a contradiction, and P(N) must be true.

Exercise 7. (p. 19)

Formulate and prove by induction a rule for the sums 12, 22—12, 32—-22412, 423242212
52 — 42 432 — 22 + 12, etc.

My Answer:
12=1
22 -12=3

3 -2 +1°=6

42 -324+22-12=10

52— 42432 -224+12=15

We can rewrite the computed sequence with

To=> (=1)'(n—1i)?
=0

With little help from formal computation, we get

T, - %n(n +1) (1.3)

Proof. Let us prove the formula.

Let P(n) be the proposition that Eq. 1.3 is correct for T,,.
By recursion on n

Initiation

Forn=1,12=1and 31 x (1+1) =1, so P(n) is true.
Heredity

Suppose P(n) true, let us prove that P(n + 1) is also true.

P(n) T = gn(n+1)
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Exercise 8. (p. 19)

(a) Prove the following theorem of Nicomachus by induction:
13=1,22=3+5,3=7+9+11,4% =13+ 15+ 17+ 19, etc.

(b) Use this result to prove the remarkable formula 13 +23 +--- 4+ n3 = (1 +2+--- +n)?
My Answer:

(a) The theorem states the following:

For all n € N we have

n

n3:Z|n(n—1)—1—|—2i\
i=1

Proof. We proceed by recursion on n.

Let P(n) be the proposition “n® = Y"1 | |n(n — 1) — 1 + 2i|".
Initiation For n = 1, 13 = 12, so P(1) is true.

Heredity Suppose P(n) true, let us prove that P(n + 1) is also true.

P(n)@n3:Zn(n—1)—1+2i
i=1

(b)

Theorem 1.1 — Formula of Nicomachus. The sum of the cubes of the first n natural
numbers is equal to the square of the sum of the first n natural numbers.

n n 2
S k= <Z k:) (1.4)
k=1 k=1

Proof. Let P(n) be the proposition “>7_; k3 = (3X7_, k)"
2
P(n) <= Y7 1k = (@) because > it i = %

+1)(n+2) 2
We want to prove that: 711 k% = (%)

n+1 nz(n + 1)2

k=1

= (n+1)? (Tf+n+1>

P(n+1)

Conclusion
2
P(1) is true because 12 = 1 and (w) =1.
P(n) true implies P(n + 1) true, so P(n) is true for all n € N. ]
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Exercise 9. (p. 19)

Prove by induction that if 0 < a« < 1 then (1 — a)® > 1 — na.
My Answer:  We proceed by recursion on n.

Let P(n) be the proposition “(1 —a)™ > 1—na”.

Initiation For n =0,

(1 —-a)"=1=1—mna, so P(0) is true.

Heredity Suppose P(n) true, let us prove that P(n + 1) is also true.

We want to prove that (1 —a)"*!1 > 1 — (n+ 1)a.

Pn)e (1—-a)">1-na
(1—a)"1—a)>(1—na)(l—a) 1—a>0
(1—a)""'>1—na—a+na
>1—(n+1)a—a
>1—(n+1)a because a > 0 = P(n+1)

Conclusion P(1) is true.
P(n) true implies P(n + 1) true, so P(n) is true for all n € N;.
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