

Copyright © 2022 Samuel Ortion

PUBLISHED BY CHAMELEON PRESS

samuel.ortion.fr

Licensed under the Creative Commons Attribution-NonCommercial 4.0 License.

Introduction

Introduction

1	Basic concepts	9
1.1	Algorithms	9
1.2	Mathematical Preliminaries	9
1.2.1	Mathematical induction	10
	Exercise 4	LO
	Exercise 5	LO
	Exercise 7	1
	Exercise 8	1
	Exercise 9	13

1. Basic concepts

1.1 Algorithms

1.2 Mathematical Preliminaries

1.2.1 Mathematical induction

Exercise 4. (p. 18)

Let F_n be the *n*-th Fibonacci number, defined by the recursion relation

$$\begin{cases} F_0 = 1, \\ F_1 = 1, \\ F_n = F_{n-1} + F_{n-2}, & n \ge 2. \end{cases}$$

Let $\phi = \frac{1+\sqrt{5}}{2}$ be the golden ratio. We have

$$F_n \le \phi^{n-1} \tag{1.1}$$

 $\forall n \in \mathbb{N}.$

Prove that, in addition to Eq. 1.1, $F_n \ge \phi^{n-2}$.

My Answer:

Let P(n) be the assertion that $F_n \ge \phi^{n-2}$.

We proceed by recursion on n.

$$1 + \phi = \phi^2 \tag{1.2}$$

$$P(n) \wedge P(n-1) \Leftrightarrow F_n \geq \phi^{n-2} \wedge F_{n-1} \geq \phi^{n-1-2}$$

$$\Leftrightarrow F_n + F_{n-1} \geq \phi^{n-2} + \phi^{n-3}$$

$$\Leftrightarrow F_n + F_{n-1} \geq \phi^{n-3} (1 + \phi)$$

$$\Leftrightarrow F_n + F_{n-1} \geq \phi^{n-3} \phi^2 \qquad using Eq. 1.2$$

$$\Leftrightarrow F_n + F_{n-1} \geq \phi^{n-1}$$

$$\Leftrightarrow F_{n+1} \geq \phi^{n+1-2}$$

$$\Leftrightarrow P(n+1)$$

Conclusion P(0) and P(1) are true. $P(n) \wedge P(n-1)$ true implies P(n+1) true. So P(n) is true for all $n \in \mathbb{N}$.

Exercise 5. (p. 19)

A prime number is an integer > 1 that has no exact divisors other than 1 and itself. Using this definition and mathematical induction, prove that every integer > 1 can be written as a product of prime numbers or is a prime itself.

My Answer: Let P(n) be the assertion that n can be written as a product of prime numbers or is a prime.

Proof. Let N > 1 be the smallest integer such that P(N) is false.

As $\forall N' < N, N' > 1, P(N')$ is true. We have either of the following assertions:

- N is a prime number;
- there exists m and n below N such that, $m \times n = N$. As m and n are below N, they satisfies P, so they are either primes or a product of primes. So mn = N is also a product of primes.

We have a contradiction, and P(N) must be true.

Exercise 7. (p. 19)

Formulate and prove by induction a rule for the sums 1^2 , 2^2-1^2 , $3^2-2^2+1^2$, $4^2-3^2+2^2-1^2$, $5^2-4^2+3^2-2^2+1^2$, etc.

My Answer:

$$1^{2} = 1$$

$$2^{2} - 1^{2} = 3$$

$$3^{2} - 2^{2} + 1^{2} = 6$$

$$4^{2} - 3^{2} + 2^{2} - 1^{2} = 10$$

$$5^{2} - 4^{2} + 3^{2} - 2^{2} + 1^{2} = 15$$

We can rewrite the computed sequence with

$$T_n = \sum_{i=0}^{n} (-1)^i (n-i)^2$$

With little help from formal computation, we get

$$T_n = \frac{1}{2}n(n+1) \tag{1.3}$$

Proof. Let us prove the formula.

Let P(n) be the proposition that Eq. 1.3 is correct for T_n .

By recursion on n

Initiation

For n = 1, $1^2 = 1$ and $\frac{1}{2}1 \times (1 + 1) = 1$, so P(n) is true.

Heredity

Suppose P(n) true, let us prove that P(n+1) is also true.

$$P(n) \Leftrightarrow T_n = \frac{1}{2}n(n+1)$$
$$\Leftrightarrow \sum_{i=0}^n (-1)^i (n-i)^2 = \frac{1}{2}n(n+1)$$

to be continued...

Exercise 8. (p. 19)

(a) Prove the following theorem of Nicomachus by induction:

 $1^3 = 1$, $2^3 = 3 + 5$, $3^3 = 7 + 9 + 11$, $4^3 = 13 + 15 + 17 + 19$, etc.

(b) Use this result to prove the remarkable formula $1^3 + 2^3 + \cdots + n^3 = (1 + 2 + \cdots + n)^2$ $My\ Answer:$

(a) The theorem states the following:

For all $n \in \mathbb{N}$ we have

$$n^{3} = \sum_{i=1}^{n} |n(n-1) - 1 + 2i|$$

Proof. We proceed by recursion on n.

Let P(n) be the proposition " $n^3 = \sum_{i=1}^n |n(n-1) - 1 + 2i|$ ". Initiation For $n = 1, 1^3 = 1^2$, so P(1) is true.

Heredity Suppose P(n) true, let us prove that P(n+1) is also true.

$$P(n) \Leftrightarrow n^3 = \sum_{i=1}^{n} n(n-1) - 1 + 2i$$

to be continued...

(b)

Theorem 1.1 — Formula of Nicomachus. The sum of the cubes of the first n natural numbers is equal to the square of the sum of the first n natural numbers.

$$\sum_{k=1}^{n} k^3 = \left(\sum_{k=1}^{n} k\right)^2 \tag{1.4}$$

Proof. Let
$$P(n)$$
 be the proposition " $\sum_{k=1}^{n} k^3 = (\sum_{k=1}^{n} k)^2$ ". $P(n) \iff \sum_{k=1}^{n} k^3 = \left(\frac{n(n+1)}{2}\right)^2$ because $\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$.

We want to prove that: $\sum_{k=1}^{n+1} k^3 = \left(\frac{(n+1)(n+2)}{2}\right)^2$

$$\sum_{k=1}^{n+1} k^3 = \frac{n^2(n+1)^2}{2^2} + (n+1)^3$$

$$= (n+1)^2 \left(\frac{n^2}{4} + n + 1\right)$$

$$= (n+1)^2 \cdot \frac{n^2 + 4n + 4}{4}$$

$$= \frac{(n+1)^2(n+2)^2}{2^2}$$

$$\updownarrow$$

$$P(n+1)$$

Conclusion

P(1) is true because $1^3 = 1$ and $(\frac{1(1+1)}{2})^2 = 1$.

P(n) true implies P(n+1) true, so P(n) is true for all $n \in \mathbb{N}_+$.

Exercise 9. (p. 19)

Prove by induction that if 0 < a < 1 then $(1 - a)^n \ge 1 - na$. **My Answer**: We proceed by recursion on n.

Let P(n) be the proposition " $(1-a)^n \ge 1 - na$ ".

Initiation For n = 0,

 $\overline{(1-a)^n} = 1 = 1 - na$, so P(0) is true.

Heredity Suppose P(n) true, let us prove that P(n+1) is also true.

We want to prove that $(1-a)^{n+1} \ge 1 - (n+1)a$.

$$P(n) \Leftrightarrow (1-a)^{n} \ge 1 - na$$

$$(1-a)^{n}(1-a) \ge (1-na)(1-a) \qquad 1-a > 0$$

$$(1-a)^{n+1} \ge 1 - na - a + na$$

$$\ge 1 - (n+1)a - a$$

$$\ge 1 - (n+1)a \qquad because \ a > 0 \qquad \Rightarrow P(n+1)$$

Conclusion P(1) is true.

P(n) true implies P(n+1) true, so P(n) is true for all $n \in \mathbb{N}_+$.

Conclusion

Bibliography

Articles

Books

Contents

Introduction

-1	
1	Basic concepts 9
1.1	Algorithms 9
1.2	Mathematical Preliminaries
1.2.1	Mathematical induction 10 Exercise 4 10 Exercise 5 10 Exercise 7 11 Exercise 8 11 Exercise 9 13
	Conclusion
	Bibliography
	Articles
	Books
	Index
	Appendices

CONTENTS 21