feat: Add ordinary least square figure

This commit is contained in:
Samuel Ortion 2023-09-23 09:00:51 +02:00
parent ae51323390
commit 180409edc3
4 changed files with 54 additions and 2 deletions

View File

@ -136,3 +136,10 @@ If $H$ is the projection matrix of the subspace generated by $\X$, $X\Y$ is the
\caption{Orthogonal projection of $\Y$ on plan generated by the base described by $\X$. $\color{blue}a$ corresponds to $\norm{\X\hat{\beta} - \bar{\Y}}^2$ and $\color{blue}b$ corresponds to $\norm{\Y - \hat{\beta}\X}^2$}
\label{fig:scheme-orthogonal-projection}
\end{figure}
\begin{figure}
\centering
\includestandalone{figures/schemes/ordinary_least_squares}
\caption{Ordinary least squares and regression line with simulated data.}
\label{fig:ordinary-least-squares}
\end{figure}

View File

@ -69,7 +69,7 @@ Let $u = \begin{pmatrix}
\begin{figure}
\centering
\includestandalone{figures/schemes/vector_orthogonality}
\caption{Illustration for the scalar product of two orthogonal vectors.}
\caption{Scalar product of two orthogonal vectors.}
\label{fig:scheme-orthogonal-scalar-product}
\end{figure}

View File

@ -0,0 +1,45 @@
\documentclass[margin=0.5cm]{standalone}
\usepackage{tikz}
\usepackage{luacode}
\begin{document}
\begin{tikzpicture}
% Draw axes
\draw[->] (0,0) -- (5,0);
\draw[->] (0,0) -- (0,5);
\directlua{
function runif(min, max)
return min + (max - min) * math.random()
end
math.randomseed(42)
x_min = 0
x_max = 5
error_min = -1
error_max = 1
beta0 = 2
beta1 = 1/5
x_values = {}
y_values = {}
for i=1,42 do
x = runif(x_min, x_max)
epsilon = runif(error_min, error_max)
y_hat = beta0 + beta1 * x
y = y_hat + epsilon
tex.print("\\draw[-,very thin, lightgray] ("..x..","..y_hat..") -- ("..x..","..y..") ;")
x_values[i] = x
y_values[i] = y
end
for i=1,42 do
x = x_values[i]
y = y_values[i]
tex.print("\\node[black] at ("..x..","..y..") {.};")
end
}
% Draw least square line
\draw[-,blue,thick] (0,2) -- (5,\directlua{tex.print(5*beta1+beta0)});
% Draw square norm
\end{tikzpicture}
\end{document}

BIN
main.pdf

Binary file not shown.