sequence-algorithms/content/chapters/part2/0.tex

25 lines
753 B
TeX

\part{Sequence alignment}
\section{Simililarity between sequences}
A function $d$ is a distance between two sequences $x$ and $y$ in an alphabet $\Sigma$ if
\begin{itemize}
\item $x, y \in \Sigma^{*}, d(x, x) = 0$
\item $\forall x, y \in \Sigma^{*}$ $d(x,y) = d(y,x)$
\item $\forall x, y, z \in \Sigma^{*}$ $d(x, z) \leq d(x, y) + d(x, z)$
\end{itemize}
Here we are interested by the distance that is able to represent the transformation of $x$ to $y$ using three types of basic operations:
\begin{itemize}
\item Substition
\item Insertion
\item Deletion
\end{itemize}
Example:
\begin{itemize}
\item $sub(a, b) = \begin{cases} 0 & \text{if} a = b \\ 1 &\text{otherwise} \end{cases}$.
\item $del(a) = 1$
\item $ins(a) = 1$
\end{itemize}